The clinical benefits of sodium-glucose cotransporter type 2 inhibitors in people with gout.


Journal

Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080

Informations de publication

Date de publication:
12 Mar 2024
Historique:
accepted: 07 02 2024
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: aheadofprint

Résumé

Gout is the most common form of inflammatory arthritis worldwide and is characterized by painful recurrent flares of inflammatory arthritis that are associated with a transiently increased risk of adverse cardiovascular events. Furthermore, gout is associated with multiple cardiometabolic-renal comorbidities such as type 2 diabetes, chronic kidney disease and cardiovascular disease. These comorbidities, potentially combined with gout flare-related inflammation, contribute to persistent premature mortality in gout, independently of serum urate concentrations and traditional cardiovascular risk factors. Although better implementation of standard gout care could improve gout outcomes, deliberate efforts to address the cardiovascular risk in patients with gout are likely to be required to reduce mortality. Sodium-glucose cotransporter type 2 (SGLT2) inhibitors are approved for multiple indications owing to their ability to lower the risk of all-cause and cardiovascular death, hospitalizations for heart failure and chronic kidney disease progression, making them an attractive treatment option for gout. These medications have also been shown to lower serum urate concentrations, the causal culprit in gout risk, and are associated with a reduced risk of incident and recurrent gout, potentially owing to their purported anti-inflammatory effects. Thus, SGLT2 inhibition could simultaneously address both the symptoms of gout and its comorbidities.

Identifiants

pubmed: 38472344
doi: 10.1038/s41584-024-01092-x
pii: 10.1038/s41584-024-01092-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Nature Limited.

Références

Choi, H. K., Mount, D. B. & Reginato, A. M. Pathogenesis of gout. Ann. Intern. Med. 143, 499–516 (2005).
doi: 10.7326/0003-4819-143-7-200510040-00009
Yokose, C. et al. Trends in prevalence of gout among US Asian adults, 2011–2018. JAMA Netw. Open 6, e239501 (2023).
pmcid: 10122173 doi: 10.1001/jamanetworkopen.2023.9501
Xia, Y. et al. Global, regional and national burden of gout, 1990–2017: a systematic analysis of the Global Burden of Disease Study. Rheumatology 59, 1529–1538 (2020).
doi: 10.1093/rheumatology/kez476
Elfishawi, M. M. et al. The rising incidence of gout and the increasing burden of comorbidities: a population-based study over 20 years. J. Rheumatol. 45, 574–579 (2018).
doi: 10.3899/jrheum.170806
Safiri, S. et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the global burden of disease study 2017. Arthritis Rheumatol. 72, 1916–1927 (2020).
doi: 10.1002/art.41404
Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).
doi: 10.1038/s41584-020-0441-1
Edwards, N. L. Quality of care in patients with gout: why is management suboptimal and what can be done about it? Curr. Rheumatol. Rep. 13, 154–159 (2011).
doi: 10.1007/s11926-010-0154-6
Sarawate, C. A. et al. Gout medication treatment patterns and adherence to standards of care from a managed care perspective. Mayo Clin. Proc. 81, 925–934 (2006).
doi: 10.4065/81.7.925
Neogi, T., Hunter, D. J., Chaisson, C. E., Allensworth-Davies, D. & Zhang, Y. Frequency and predictors of inappropriate management of recurrent gout attacks in a longitudinal study. J. Rheumatol. 33, 104–109 (2006).
Chock, Y. P., Ross, J. S., Suter, L. G. & Rhee, T. G. Gout treatment in the USA from 2009 to 2016: a repeated cross-sectional analysis. J. Gen. Intern. Med. 36, 1134–1136 (2021).
doi: 10.1007/s11606-020-05942-8
Singh, J. A. & Cleveland, J. D. Time trends in opioid use disorder hospitalizations in gout, rheumatoid arthritis, fibromyalgia, osteoarthritis, and low back pain. J. Rheumatol. 48, 775–784 (2021).
doi: 10.3899/jrheum.191370
Dalal, D. S. et al. Prescription opioid use among patients with acute gout discharged from the emergency department. Arthritis care Res. 72, 1163–1168 (2020).
doi: 10.1002/acr.23928
Jinno, S., Hasegawa, K., Neogi, T., Goto, T. & Dubreuil, M. Trends in emergency department visits and charges for gout in the United States between 2006 and 2012. J. Rheumatol. 43, 1589–1592 (2016).
pmcid: 5335867 doi: 10.3899/jrheum.151432
Garg, R. et al. Gout-related health care utilization in US emergency departments, 2006 through 2008. Arthritis care Res. 65, 571–577 (2013).
doi: 10.1002/acr.21837
Lim, S. Y. et al. Trends in gout and rheumatoid arthritis hospitalizations in the United States, 1993–2011. J. Am. Med. Assoc. 315, 2345–2347 (2016).
doi: 10.1001/jama.2016.3517
Rai, S. K. et al. Trends in gout and rheumatoid arthritis hospitalizations in Canada From 2000 to 2011. Arthritis care Res. 69, 758–762 (2017).
doi: 10.1002/acr.23012
Russell, M. D. et al. Rising incidence of acute hospital admissions due to gout. J. Rheumatol. 47, 619–623 (2020).
doi: 10.3899/jrheum.190257
Dehlin, M. & Jacobsson, L. T. H. Trends in gout hospitalization in Sweden. J. Rheumatol. 45, 145–146 (2018).
doi: 10.3899/jrheum.170381
Cipolletta, E. et al. Association Between gout flare and subsequent cardiovascular events among patients with gout. J. Am. Med. Assoc. 328, 440–450 (2022).
doi: 10.1001/jama.2022.11390
Choi, H. K. & McCormick, N. Beyond joint pain, could each gout flare lead to heart attack? Nat. Rev. Rheumatol. 18, 619–620 (2022).
doi: 10.1038/s41584-022-00844-x
Zhu, Y., Pandya, B. J. & Choi, H. K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687.e1 (2012).
doi: 10.1016/j.amjmed.2011.09.033
Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann. Rheum. Dis. 75, 210–217 (2016).
doi: 10.1136/annrheumdis-2014-206410
Choi, H. K. & Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 116, 894–900 (2007).
doi: 10.1161/CIRCULATIONAHA.107.703389
Abbott, R. D., Brand, F. N., Kannel, W. B. & Castelli, W. P. Gout and coronary heart disease: the Framingham Study. J. Clin. Epidemiol. 41, 237–242 (1988).
doi: 10.1016/0895-4356(88)90127-8
Gupta, S. et al. The risk of cardiovascular disease among male and female participants treated for gout in the Multi-Ethnic Study of Atherosclerosis (MESA). Gout Urate Cryst. Depos. Dis. 1, 89–98 (2023).
doi: 10.3390/gucdd1020009
Bardin, T., Letavernier, E. & Correas, J.-M. The gouty kidney: a reappraisal. Gout Urate Cryst. Depos. Dis. 1, 25–36 (2023).
doi: 10.3390/gucdd1010004
Disveld, I. J. M. et al. Crystal-proven gout patients have an increased mortality due to cardiovascular diseases, cancer, and infectious diseases especially when having tophi and/or high serum uric acid levels: a prospective cohort study. Clin. Rheumatol. 38, 1385–1391 (2019).
doi: 10.1007/s10067-019-04520-6
Kuo, C. F. et al. Gout: an independent risk factor for all-cause and cardiovascular mortality. Rheumatology 49, 141–146 (2010).
doi: 10.1093/rheumatology/kep364
Fisher, M. C., Rai, S. K., Lu, N., Zhang, Y. & Choi, H. K. The unclosing premature mortality gap in gout: a general population-based study. Ann. Rheum. Dis. 76, 1289–1294 (2017).
doi: 10.1136/annrheumdis-2016-210588
Marty-Ane, A. et al. Crystal deposition measured with dual-energy computed tomography: association with mortality and cardiovascular risks in gout. Rheumatology 60, 4855–4860 (2021).
doi: 10.1093/rheumatology/keaa920
McCormick, N. et al. Persistent premature mortality in gout: nationwide prospective cohort study [Abstract]. Ann. Rheum. Dis. 82, 436 (2023).
FitzGerald, J. D. et al. American College of Rheumatology guideline for the management of gout. Arthritis Care Res. 72, 744–760 (2020).
doi: 10.1002/acr.24180
Richette, P. et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 76, 29–42 (2017).
doi: 10.1136/annrheumdis-2016-209707
Doherty, M. et al. Nurse-led care versus general practitioner care of people with gout: a UK community-based randomised controlled trial. Ann. Rheum. Dis. https://doi.org/10.2139/ssrn.3221414 (2018).
Becker, M. A., Schumacher, H. R., MacDonald, P. A., Lloyd, E. & Lademacher, C. Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J. Rheumatol. 36, 1273–1282 (2009).
doi: 10.3899/jrheum.080814
Schumacher, H. R. Jr, Becker, M. A., Lloyd, E., MacDonald, P. A. & Lademacher, C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology 48, 188–194 (2009).
doi: 10.1093/rheumatology/ken457
Doherty, M. et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet 392, 1403–1412 (2018).
pmcid: 6196879 doi: 10.1016/S0140-6736(18)32158-5
Choi, H. K., McCormick, N. & Yokose, C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 18, 97–111 (2022).
doi: 10.1038/s41584-021-00725-9
Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020).
doi: 10.1016/S0140-6736(20)32234-0
Badve, S. V. et al. Effects of allopurinol on the progression of chronic kidney disease. N. Engl. J. Med. 382, 2504–2513 (2020).
doi: 10.1056/NEJMoa1915833
Doria, A. et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N. Engl. J. Med. 382, 2493–2503 (2020).
pmcid: 7375708 doi: 10.1056/NEJMoa1916624
US Food and Drug Administration. FDA adds Boxed Warning for increased risk of death with gout medicine Uloric (febuxostat). https://www.fda.gov/drugs/drug-safety-and-availability/fda-adds-boxed-warning-increased-risk-death-gout-medicine-uloric-febuxostat (21 February 2019).
McMullan, C. J., Borgi, L., Fisher, N., Curhan, G. & Forman, J. Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial. Clin. J. Am. Soc. Nephrol. 12, 807–816 (2017).
pmcid: 5477221 doi: 10.2215/CJN.10771016
Gaffo, A. L. et al. Effect of serum urate lowering with allopurinol on blood pressure in young adults: a randomized, controlled, crossover trial. Arthritis Rheumatol. 73, 1514–1522 (2021).
doi: 10.1002/art.41749
White, W. B. et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N. Engl. J. Med. 378, 1200–1210 (2018).
doi: 10.1056/NEJMoa1710895
Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J. Am. Coll. Cardiol. 51, 2301–2309 (2008).
doi: 10.1016/j.jacc.2008.01.068
Givertz, M. M. et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 131, 1763–1771 (2015).
pmcid: 4438785 doi: 10.1161/CIRCULATIONAHA.114.014536
Scheen, A. J. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 556–577 (2020).
doi: 10.1038/s41574-020-0392-2
Khunti, K. SGLT2 inhibitors in people with and without T2DM. Nat. Rev. Endocrinol. 17, 75–76 (2021).
doi: 10.1038/s41574-020-00453-2
ElSayed, N. A. et al. 9. pharmacologic approaches to glycemic treatment: standards of care in diabetes — 2023. Diabetes Care 46, S140–S157 (2023).
doi: 10.2337/dc23-S009
Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).
pmcid: 6245208 doi: 10.2337/dci18-0033
Kidney Disease: Improving Global Outcomes (KDGIO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 102, S1–S127 (2022).
doi: 10.1016/j.kint.2022.06.008
de Boer, I. H. et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 45, 3075–3090 (2022).
pmcid: 9870667 doi: 10.2337/dci22-0027
Heidenreich, P. A. et al. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, e263–e421 (2022).
doi: 10.1016/j.jacc.2021.12.012
Arnett, D. K. et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, e177–e232 (2019).
doi: 10.1016/j.jacc.2019.03.010
US Food and Drug Administration. Highlights of Prescribing Information — Invokana. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204042s040lbl.pdf (2023).
US Food and Drug Administration. Highlights of Prescribing Information — Farxiga. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202293s026lbl.pdf (2023).
US Food and Drug Administration. Highlights of Prescribing Information — Jardiance. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204629s040lbl.pdf (2023).
Zhao, Y. et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 20, 458–462 (2018).
doi: 10.1111/dom.13101
Yip, A. S. Y. et al. Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and meta-regression of 43 randomized controlled trials. Ther. Adv. Chronic Dis. 13, 20406223221083509 (2022).
pmcid: 8949773 doi: 10.1177/20406223221083509
Hu, X. et al. Effects of sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Diabetes Obes. Metab. 24, 228–238 (2022).
doi: 10.1111/dom.14570
Xin, Y. et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with an indirect comparison meta-analysis. Saudi J. Biol. Sci. 26, 421–426 (2019).
doi: 10.1016/j.sjbs.2018.11.013
Doehner, W. et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur. Heart J. 43, 3435–3446 (2022).
pmcid: 9492270 doi: 10.1093/eurheartj/ehac320
Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).
doi: 10.1056/NEJMoa2022190
McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).
doi: 10.1056/NEJMoa1911303
McDowell, K. et al. Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF. Eur. J. Heart Fail. 24, 1066–1076 (2022).
doi: 10.1002/ejhf.2433
Ferreira, J. P. et al. Empagliflozin and uric acid metabolism in diabetes: a post hoc analysis of the EMPA-REG OUTCOME trial. Diabetes Obes. Metab. 24, 135–141 (2022).
doi: 10.1111/dom.14559
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).
doi: 10.1056/NEJMoa1504720
Li, J. et al. The effects of canagliflozin on gout in type 2 diabetes: a post-hoc analysis of the CANVAS Program. Lancet Rheumatol. 1, e220–e228 (2019).
doi: 10.1016/S2665-9913(19)30078-5
Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).
doi: 10.1056/NEJMoa1611925
Stack, A. G. et al. Dapagliflozin added to verinurad plus febuxostat further reduces serum uric acid in hyperuricemia: the QUARTZ Study. J. Clin. Endocrinol. Metab. 106, e2347–e2356 (2021).
doi: 10.1210/clinem/dgaa748
Yokose C et al. Serum urate change among gout patients initiating sodium-glucose cotransporter type 2 inhibitors (SGLT2i) vs. sulfonylureas: a comparative effectiveness analysis [Abstract]. Arthritis Rheumatol. 2023;75.
Vargas-Santos AB, Peloquin C, Kim SC, Neogi T. Sodium-glucose co-transporter-2 inhibitors and the risk for gout — a comparison among canagliflozin, dapagliflozin and empagliflozin [Abstract]. Arthritis Rheumatol. 2020;72.
Butt, J. H. et al. Association of dapagliflozin use with clinical outcomes and the introduction of uric acid-lowering therapy and colchicine in patients with heart failure with and without gout: a patient-level pooled meta-analysis of DAPA-HF and DELIVER. JAMA Cardiol. 8, 386–393 (2023).
pmcid: 9947801 doi: 10.1001/jamacardio.2022.5608
Neogi, T. et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 74, 1789–1798 (2015).
doi: 10.1136/annrheumdis-2015-208237
Gaffo, A. L. et al. Brief Report: validation of a definition of flare in patients with established gout. Arthritis Rheumatol. 70, 462–467 (2018).
doi: 10.1002/art.40381
Fralick, M., Chen, S. K., Patorno, E. & Kim, S. C. Assessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: a population-based cohort study. Ann. Intern. Med. 172, 186–194 (2020).
pmcid: 7217750 doi: 10.7326/M19-2610
Lund, L. C., Hojlund, M., Henriksen, D. P., Hallas, J. & Kristensen, K. B. Sodium-glucose cotransporter-2 inhibitors and the risk of gout: a Danish population based cohort study and symmetry analysis. Pharmacoepidemiol. Drug. Saf. 30, 1391–1395 (2021).
doi: 10.1002/pds.5252
Chung, M. C. et al. Association of sodium-glucose transport protein 2 inhibitor use for type 2 diabetes and incidence of gout in Taiwan. JAMA Netw. Open 4, e2135353 (2021).
pmcid: 8605485 doi: 10.1001/jamanetworkopen.2021.35353
Zhou, J. et al. Lower risk of gout in sodium glucose cotransporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP4) inhibitors in type-2 diabetes. Rheumatology 62, 1501–1510 (2023).
doi: 10.1093/rheumatology/keac509
Yokose, C. et al. Risk of incident gout associated with initiation of sodium-glucose cotransporter-2 inhibitors versus other second-line agents among metformin users with type 2 diabetes [Abstract]. Ann. Rheum. Dis. 2023:171.
Banerjee, M., Pal, R. & Mukhopadhyay, S. Can SGLT2 inhibitors prevent incident gout? A systematic review and meta-analysis. Acta Diabetol. 59, 783–791 (2022).
doi: 10.1007/s00592-022-01866-3
Bailey, C. J. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes. Metab. 21, 1291–1298 (2019).
doi: 10.1111/dom.13670
Qaseem, A., Harris, R. P. & Forciea, M. A. Management of acute and recurrent gout: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 166, 58–68 (2017).
doi: 10.7326/M16-0570
McCormick, N. et al. Comparative effectiveness of sodium-glucose cotransporter-2 inhibitors for recurrent gout flares and gout-primary emergency department visits and hospitalizations : a general population cohort study. Ann. Intern. Med. 176, 1067–1080 (2023).
doi: 10.7326/M23-0724
Choi, H. K., Zhang, Y. & Dalbeth, N. When underlying biology threatens the randomization principle - initial gout flares of urate-lowering therapy. Nat. Rev. Rheumatol. 18, 543–549 (2022).
pmcid: 9309993 doi: 10.1038/s41584-022-00804-5
Wei, J. et al. Gout flares and mortality after sodium-glucose cotransporter-2 inhibitor treatment for gout and type 2 diabetes. JAMA Netw. Open 6, e2330885 (2023).
pmcid: 10457713 doi: 10.1001/jamanetworkopen.2023.30885
Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).
doi: 10.1038/s41569-020-0406-8
Zannad, F. et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur. Heart J. 43, 4991–5002 (2022).
pmcid: 9769969 doi: 10.1093/eurheartj/ehac495
Ahmadieh, H. & Azar, S. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus. Diabetes Technol. Ther. 19, 507–512 (2017).
doi: 10.1089/dia.2017.0070
Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).
pmcid: 7242158 doi: 10.1038/s41581-020-0256-y
Nespoux, J. & Vallon, V. Renal effects of SGLT2 inhibitors: an update. Curr. Opin. Nephrol. Hypertens. 29, 190–198 (2020).
pmcid: 7224333 doi: 10.1097/MNH.0000000000000584
Dalbeth, N. et al. Gout. Nat. Rev. Dis. Primers 5, 69 (2019).
doi: 10.1038/s41572-019-0115-y
Novikov, A. et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Renal Physiol. 316, F173–F185 (2019).
doi: 10.1152/ajprenal.00462.2018
Quinones Galvan, A. et al. Effect of insulin on uric acid excretion in humans. Am. J. Physiol. 268, E1–E5 (1995).
Cherney, D. Z., Odutayo, A., Aronson, R., Ezekowitz, J. & Parker, J. D. Sodium glucose cotransporter-2 inhibition and cardiorenal protection: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 74, 2511–2524 (2019).
doi: 10.1016/j.jacc.2019.09.022
Muscelli, E. et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am. J. Hypertens. 9, 746–752 (1996).
doi: 10.1016/0895-7061(96)00098-2
Ter Maaten, J. C. et al. Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects. Clin. Sci. 92, 51–58 (1997).
doi: 10.1042/cs0920051
Facchini, F., Chen, Y. D., Hollenbeck, C. B. & Reaven, G. M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. J. Am. Med. Assoc. 266, 3008–3011 (1991).
doi: 10.1001/jama.1991.03470210076036
McCormick, N. et al. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using bidirectional mendelian randomization. Arthritis Rheumatol. 73, 2096–2104 (2021).
pmcid: 8568618 doi: 10.1002/art.41779
Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M. J. & Seufert, J. Cardiovascular protection by SGLT2 inhibitors — do anti-inflammatory mechanisms play a role? Mol. Metab. 64, 101549 (2022).
pmcid: 9352970 doi: 10.1016/j.molmet.2022.101549
Mancini, S. J. et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci. Rep. 8, 5276 (2018).
pmcid: 5869674 doi: 10.1038/s41598-018-23420-4
Maayah, Z. H., Ferdaoussi, M., Takahara, S., Soni, S. & Dyck, J. R. B. Empagliflozin suppresses inflammation and protects against acute septic renal injury. Inflammopharmacology 29, 269–279 (2021).
doi: 10.1007/s10787-020-00732-4
Hawley, S. A. et al. The Na
doi: 10.2337/db16-0058
Xu, J., Kitada, M., Ogura, Y., Liu, H. & Koya, D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells. Cells 10, 1457 (2021).
pmcid: 8230404 doi: 10.3390/cells10061457
Theofilis, P. et al. The impact of SGLT2 inhibitors on inflammation: a systematic review and meta-analysis of studies in rodents. Int. Immunopharmacol. 111, 109080 (2022).
doi: 10.1016/j.intimp.2022.109080
Scisciola, L. et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials. Front. Cardiovasc. Med. 9, 1008922 (2022).
pmcid: 9485634 doi: 10.3389/fcvm.2022.1008922
Heerspink, H. J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62, 1154–1166 (2019).
pmcid: 6560022 doi: 10.1007/s00125-019-4859-4
Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13, e006277 (2020).
doi: 10.1161/CIRCHEARTFAILURE.119.006277
Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11, 2127 (2020).
pmcid: 7195385 doi: 10.1038/s41467-020-15983-6
Banerjee, M., Pal, R., Maisnam, I., Chowdhury, S. & Mukhopadhyay, S. Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout: a meta-analysis and meta-regression of randomized controlled trials. Diabetes Obes. Metab. 25, 2697–2703 (2023).
doi: 10.1111/dom.15157
Zinman, B., Lachin, J. M. & Inzucchi, S. E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 374, 1094 (2016).
Wanner, C., Inzucchi, S. E. & Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 1801–1802 (2016).
doi: 10.1056/NEJMoa1515920
Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).
doi: 10.1056/NEJMoa1812389
Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).
doi: 10.1056/NEJMoa2024816
Group, E.-K. C. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2022).
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).
doi: 10.1056/NEJMoa2107038
Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).
doi: 10.1056/NEJMoa2206286
European Medicines Agency. Jardiance : EPAR - Product Information. https://www.ema.europa.eu/en/medicines/human/EPAR/jardiance#ema-inpage-item-product-info (accessed 29 January 2024).
European Medicines Agency. Forxiga. https://www.ema.europa.eu/en/medicines/human/EPAR/forxiga (accessed 29 January 2024).
European Medicines Agency. Invokana. https://www.ema.europa.eu/en/medicines/human/EPAR/invokana (accessed 29 January 2024).
Roughley, M. J., Belcher, J., Mallen, C. D. & Roddy, E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res. Ther. 17, 90 (2015).
pmcid: 4404569 doi: 10.1186/s13075-015-0610-9
Liu, J. et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci. Rep. 7, 2824 (2017).
pmcid: 5460243 doi: 10.1038/s41598-017-02733-w
Gomez-Peralta, F. et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Ther. 8, 953–962 (2017).
pmcid: 5630545 doi: 10.1007/s13300-017-0277-0
Nauck, M. A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug. Des. Devel Ther. 8, 1335–1380 (2014).
pmcid: 4166348 doi: 10.2147/DDDT.S50773
Vardeny, O. & Vaduganathan, M. Practical guide to prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists. JACC Heart Fail. 7, 169–172 (2019).
doi: 10.1016/j.jchf.2018.11.013
Scheen, A. J. An update on the safety of SGLT2 inhibitors. Expert. Opin. Drug. Saf. 18, 295–311 (2019).
doi: 10.1080/14740338.2019.1602116
Banerjee, M., Maisnam, I., Pal, R. & Mukhopadhyay, S. Mineralocorticoid receptor antagonists with sodium-glucose co-transporter-2 inhibitors in heart failure: a meta-analysis. Eur. Heart J. 44, 3686–3696 (2023).
doi: 10.1093/eurheartj/ehad522
Chan, Y. H. et al. Association of acute increases in serum creatinine with subsequent outcomes in patients with type 2 diabetes mellitus treated with sodium-glucose cotransporter 2 inhibitor or dipeptidyl peptidase-4 inhibitor. Eur. Heart J. Qual. Care Clin. Outcomes 9, 397–407 (2023).
US Food and Drug Administration. FDA drug safety communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-confirms-increased-risk-leg-and-foot-amputations-diabetes-medicine (accessed 4 May 2023).
US Food and Drug Administration. FDA drug safety communication: FDA removes Boxed Warning about risk of leg and foot amputations for the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). https://www.fda.gov/drugs/drug-safety-and-availability/fda-removes-boxed-warning-about-risk-leg-and-foot-amputations-diabetes-medicine-canagliflozin (accessed 4 May 4 2023).
Rashid, N. et al. Patient and clinical characteristics associated with gout flares in an integrated healthcare system. Rheumatol. Int. 35, 1799–1807 (2015).
pmcid: 4611012 doi: 10.1007/s00296-015-3284-3
Adhikari, R. et al. National trends in use of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists by cardiologists and other specialties, 2015 to 2020. J. Am. Heart Assoc. 11, e023811 (2022).
pmcid: 9238581 doi: 10.1161/JAHA.121.023811
Doehner, W. & Packer, M. Sodium-glucose cotransporter 2 inhibitor treatment lowers serum uric acid in patients with heart failure with reduced ejection fraction — lessons from clinical trials. Letter regarding the article ‘Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF’. Eur. J. Heart Fail. 24, 1993–1994 (2022).
doi: 10.1002/ejhf.2666

Auteurs

Chio Yokose (C)

Rheumatology & Allergy Clinical Epidemiology Research Center (RACER), Mongan Institute, Massachusetts General Hospital, Boston, MA, USA. cyokose@mgh.harvard.edu.
Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA. cyokose@mgh.harvard.edu.
Harvard Medical School, Boston, MA, USA. cyokose@mgh.harvard.edu.

Natalie McCormick (N)

Rheumatology & Allergy Clinical Epidemiology Research Center (RACER), Mongan Institute, Massachusetts General Hospital, Boston, MA, USA.
Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.
Arthritis Research Canada, Vancouver, British Columbia, Canada.

Abhishek Abhishek (A)

The University of Nottingham, Nottingham, UK.

Nicola Dalbeth (N)

Department of Medicine, University of Auckland, Auckland, New Zealand.

Tristan Pascart (T)

Department of Rheumatology, Lille Catholic University, Saint-Philibert Hospital, Lille, France.

Frédéric Lioté (F)

Université Paris Cité, Inserm UMR 1132 Bioscar, centre Viggo Petersen, Hôpital Lariboisière, Paris, France.
Rheumatology Department, Saint-Joseph Paris Hospital, Paris, France.

Angelo Gaffo (A)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
Birmingham VA Medical Center, Birmingham, AL, USA.

John FitzGerald (J)

Department of Medicine/Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Veterans Health Affairs, Greater Los Angeles, Los Angeles, CA, USA.

Robert Terkeltaub (R)

Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA.

Meghan E Sise (ME)

Harvard Medical School, Boston, MA, USA.
Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA.

James L Januzzi (JL)

Harvard Medical School, Boston, MA, USA.
Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
Baim Institute for Clinical Research, Boston, MA, USA.

Deborah J Wexler (DJ)

Harvard Medical School, Boston, MA, USA.
MGH Diabetes Center, Massachusetts General Hospital, Boston, MA, USA.

Hyon K Choi (HK)

Rheumatology & Allergy Clinical Epidemiology Research Center (RACER), Mongan Institute, Massachusetts General Hospital, Boston, MA, USA.
Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.
Arthritis Research Canada, Vancouver, British Columbia, Canada.

Classifications MeSH