Application of fluorocarbon nanoparticles of
Breast cancer
Cerenkov radiation
Fulvestrant
Nanomedicine
Nuclear medicine
Photodynamic therapy
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
12 Mar 2024
12 Mar 2024
Historique:
received:
20
09
2023
accepted:
26
01
2024
medline:
13
3
2024
pubmed:
13
3
2024
entrez:
13
3
2024
Statut:
epublish
Résumé
Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. To address these challenges, we engineered tumor-targeting nanoparticles termed Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The We've pioneered a nanoparticle system loaded with radioactive isotope
Sections du résumé
BACKGROUND
BACKGROUND
Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant.
METHOD
METHODS
To address these challenges, we engineered tumor-targeting nanoparticles termed
RESULTS
RESULTS
Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The
CONCLUSION
CONCLUSIONS
We've pioneered a nanoparticle system loaded with radioactive isotope
Identifiants
pubmed: 38475902
doi: 10.1186/s12951-024-02309-7
pii: 10.1186/s12951-024-02309-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107Subventions
Organisme : National Natural Science Foundation of China
ID : 82002615
Organisme : National Natural Science Foundation of China
ID : 81972460
Informations de copyright
© 2024. The Author(s).
Références
Cathcart-Rake EJ, Tevaarwerk AJ, Haddad TC, D’Andre SD, Ruddy KJ. Advances in the care of breast cancer survivors. BMJ. 2023;18(382):e071565.
doi: 10.1136/bmj-2022-071565
Tarantino P, Viale G, Press MF, Hu X, Penault-Llorca F, Bardia A, et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann Oncol. 2023;34(8):645–59.
pubmed: 37269905
doi: 10.1016/j.annonc.2023.05.008
Masuda J, Sakai H, Tsurutani J, Tanabe Y, Masuda N, Iwasa T, et al. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: a phase II study (WJOG11418B NEWFLAME trial). J Immunother Cancer. 2023;11(9):e007126.
pubmed: 37709297
pmcid: 10503337
doi: 10.1136/jitc-2023-007126
Overcoming Endocrine Resistance in Breast Cancer – PubMed. https://pubmed.ncbi.nlm.nih.gov/32289273/ . Accessed 21 Sept 2023.
Haddad TC, Suman VJ, D’Assoro AB, Carter JM, Giridhar KV, McMenomy BP, et al. Evaluation of alisertib alone or combined with fulvestrant in patients with endocrine-resistant advanced breast cancer: the phase 2 TBCRC041 randomized clinical trial. JAMA Oncol. 2023;9(6):815–24.
pubmed: 36892847
pmcid: 9999287
doi: 10.1001/jamaoncol.2022.7949
Nie P, Kalidindi T, Nagle VL, Wu X, Li T, Liao GP, et al. Imaging of cancer γ-secretase activity using an inhibitor-based PET probe. Clin Cancer Res. 2021;27(22):6145–55.
pubmed: 34475100
pmcid: 8610083
doi: 10.1158/1078-0432.CCR-21-0940
Zhao L, Gong J, Qi Q, Liu C, Su H, Xing Y, et al. 131I-Labeled Anti-HER2 nanobody for targeted radionuclide therapy of HER2-positive breast cancer. Int J Nanomed. 2023;18:1915–25.
doi: 10.2147/IJN.S399322
Fallah J, Agrawal S, Gittleman H, Fiero MH, Subramaniam S, John C, et al. FDA approval summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29(9):1651–7.
pubmed: 36469000
pmcid: 10159870
doi: 10.1158/1078-0432.CCR-22-2875
Chan C, Prozzo V, Aghevlian S, Reilly RM. Formulation of a kit under Good Manufacturing Practices (GMP) for preparing [111In]In-BnDTPA-trastuzumab-NLS injection: a theranostic agent for imaging and Meitner-Auger Electron (MAE) radioimmunotherapy of HER2-positive breast cancer. EJNMMI Radiopharm Chem. 2022;7(1):33.
pubmed: 36542157
pmcid: 9772372
doi: 10.1186/s41181-022-00186-9
Yin G, Zeng B, Peng Z, Liu Y, Sun L, Liu C. Synthesis and application of 131I-fulvestrant as a targeted radiation drug for endocrine therapy in human breast cancer. Oncol Rep. 2018;39(3):1215–26.
pubmed: 29328488
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017;24(6):233–43.
pubmed: 28574057
doi: 10.1038/cgt.2017.16
Nguyen VD, Min HK, Kim CS, Han J, Park JO, Choi E. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;1(173):539–48.
doi: 10.1016/j.colsurfb.2018.10.013
Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17(6):349–59.
pubmed: 32152484
doi: 10.1038/s41571-020-0339-5
Soe ZC, Thapa RK, Ou W, Gautam M, Nguyen HT, Jin SG, et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces. 2018;1(170):718–28.
doi: 10.1016/j.colsurfb.2018.07.013
Hosseini M, Ahmadi Z, Kefayat A, Molaabasi F, Ebrahimpour A, Naderi Khojasteh Far Y, et al. Multifunctional gold helix phototheranostic biohybrid that enables targeted image-guided photothermal therapy in breast cancer. ACS Appl Mater Interfaces. 2022;14(33):37447–65.
pubmed: 35943871
doi: 10.1021/acsami.2c10028
Kefayat A, Hosseini M, Ghahremani F, Jolfaie NA, Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnol. 2022;20(1):169.
doi: 10.1186/s12951-022-01380-2
Kefayat A, Ghahremani F, Motaghi H, Mehrgardi MA. Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur J Pharm Sci. 2019;15(130):225–33.
doi: 10.1016/j.ejps.2019.01.037
Kefayat A, Ghahremani F, Motaghi H, Amouheidari A. Ultra-small but ultra-effective: folic acid-targeted gold nanoclusters for enhancement of intracranial glioma tumors’ radiation therapy efficacy. Nanomedicine. 2019;16:173–84.
pubmed: 30594659
doi: 10.1016/j.nano.2018.12.007
Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat. 2014;17(4–6):89–95.
pubmed: 25457975
doi: 10.1016/j.drup.2014.10.002
Jang H, Kim H, Kim EH, Han G, Jang Y, Kim Y, et al. Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery. Biomater Res. 2023;27(1):124.
pubmed: 38031117
pmcid: 10688116
doi: 10.1186/s40824-023-00456-w
Cytotoxicity Enhancement of α-Mangostin with Folate-Conjugated Chitosan Nanoparticles in MCF-7 Breast Cancer Cells – PubMed. https://pubmed.ncbi.nlm.nih.gov/38005306/ . Accessed 26 Dec 2023.
Lv Y, Chen X, Shen Y. Folate-modified carboxymethyl chitosan-based drug delivery system for breast cancer specific combination therapy via regulating mitochondrial calcium concentration. Carbohydr Polym. 2024;1(323):121434.
doi: 10.1016/j.carbpol.2023.121434
Handali S, Moghimipour E, Kouchak M, Ramezani Z, Amini M, Angali KA, et al. New folate receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: strong implication for enhanced potency and safety. Life Sci. 2019;15(227):39–50.
doi: 10.1016/j.lfs.2019.04.030
Accurate delivery of pristimerin and paclitaxel by folic acid-linked nano-micelles for enhancing chemosensitivity in cancer therapy - PubMed. https://pubmed.ncbi.nlm.nih.gov/36427092/ . Accessed 26 Dec 2023.
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther. 2022;39:102915.
pubmed: 35597441
doi: 10.1016/j.pdpdt.2022.102915
Yao J, Yang Z, Huang L, Yang C, Wang J, Cao Y, et al. Low-intensity focused ultrasound-responsive ferrite-encapsulated nanoparticles for atherosclerotic plaque neovascularization theranostics. Adv Sci (Weinh). 2021;8(19):e2100850.
pubmed: 34382370
doi: 10.1002/advs.202100850
Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomed. 2020;15:6827–38.
doi: 10.2147/IJN.S269321
Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics. 2022;12(1):434–58.
pubmed: 34987658
pmcid: 8690913
doi: 10.7150/thno.67300
Application of Cherenkov radiation in tumor imaging and treatment – PubMed. https://pubmed.ncbi.nlm.nih.gov/36065976/ . Accessed 20 Sept 2023.
Cline B, Delahunty I, Xie J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(2):e1541.
pubmed: 30063116
doi: 10.1002/wnan.1541
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater. 2023;21:157–74.
pubmed: 36093325
Qian R, Wang K, Guo Y, Li H, Zhu Z, Huang X, et al. Minimizing adverse effects of Cerenkov radiation induced photodynamic therapy with transformable photosensitizer-loaded nanovesicles. J Nanobiotechnol. 2022;20(1):203.
doi: 10.1186/s12951-022-01401-0
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep. 2019;9(1):19161.
pubmed: 31844085
pmcid: 6915779
doi: 10.1038/s41598-019-55605-w
Greenwalt I, Zaza N, Das S, Li BD. Precision medicine and targeted therapies in breast cancer. Surg Oncol Clin N Am. 2020;29(1):51–62.
pubmed: 31757313
doi: 10.1016/j.soc.2019.08.004
Shah C, Bauer-Nilsen K, McNulty RH, Vicini F. Novel radiation therapy approaches for breast cancer treatment. Semin Oncol. 2020;47(4):209–16.
pubmed: 32513420
doi: 10.1053/j.seminoncol.2020.05.003
Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535.
pubmed: 32361569
doi: 10.1016/j.intimp.2020.106535
Artigas C, Mileva M, Flamen P, Karfis I. Targeted radionuclide therapy: an emerging field in solid tumours. Curr Opin Oncol. 2021;33(5):493–9.
pubmed: 34183491
doi: 10.1097/CCO.0000000000000762
Kleynhans J, Duatti A, Bolzati C. Fundamentals of Rhenium-188 radiopharmaceutical chemistry. Molecules. 2023;28(3):1487.
pubmed: 36771153
pmcid: 9921938
doi: 10.3390/molecules28031487
Zhang X, Wakabayashi H, Kayano D, Inaki A, Kinuya S. I-131 metaiodobenzylguanidine therapy is a significant treatment option for pheochromocytoma and paraganglioma. Nuklearmedizin. 2022;61(3):231–9.
pubmed: 35668668
doi: 10.1055/a-1759-2050
Targeted radiotherapy of pigmented melanoma with 131I-5-IPN – PubMed. https://pubmed.ncbi.nlm.nih.gov/30537980/ . Accessed 21 Sept 2023.
131I anti-CD45 radioimmunotherapy effectively targets and treats T-cell non-Hodgkin lymphoma – PubMed. https://pubmed.ncbi.nlm.nih.gov/19332764/ . Accessed 21 Sept 2023.
Postema EJ, Frielink C, Oyen WJG, Raemaekers JMM, Goldenberg DM, Corstens FHM, et al. Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm. 2003;18(4):525–33.
pubmed: 14503946
Kumar C, Sharma R, Repaka KM, Pareri AU, Dash A. Camptothecin enhances 131I-rituximab-induced G1-arrest and apoptosis in Burkitt lymphoma cells. J Cancer Res Ther. 2021;17(4):943–50.
pubmed: 34528546
doi: 10.4103/jcrt.JCRT_1012_19
Larson SM, Carrasquillo JA, Krohn KA, Brown JP, McGuffin RW, Ferens JM, et al. Localization of 131I-labeled p97-specific Fab fragments in human melanoma as a basis for radiotherapy. J Clin Invest. 1983;72(6):2101–14.
pubmed: 6196380
pmcid: 437051
doi: 10.1172/JCI111175
Fan YX, Luo RC, Fang YX, Yan X, Lu CW. Effects of interferon-gamma on Her-2/neu expression and antitumor activity of 131I-Herceptin in breast cancer cell lines. Ai Zheng. 2006;25(4):443–6.
pubmed: 16613677
Origin of urinary epidermal growth factor in humans: excretion of endogenous EGF and infused [131I]-human EGF and kidney histochemistry – PubMed. https://pubmed.ncbi.nlm.nih.gov/1424295/ . Accessed 21 Sept 2023.
Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im SA, et al. Phase III randomized study of Ribociclib and Fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;36(24):2465–72.
pubmed: 29860922
doi: 10.1200/JCO.2018.78.9909
Sledge GW, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. The effect of Abemaciclib Plus Fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy-MONARCH 2: a randomized clinical trial. JAMA Oncol. 2020;6(1):116–24.
pubmed: 31563959
doi: 10.1001/jamaoncol.2019.4782
Pandya H, Sangle G, Unadkat V, Goswami V, Purohit P, Mehta C, et al. Abstract 4043: KSHN001034: an intramuscular prodrug of fulvestrant to treat estrogen-receptor (ER) positive advanced metastatic breast cancer. Cancer Res. 2022;82:4043.
doi: 10.1158/1538-7445.AM2022-4043
Young OE, Renshaw L, Macaskill EJ, White S, Faratian D, Thomas JSJ, et al. Effects of fulvestrant 750mg in premenopausal women with oestrogen-receptor-positive primary breast cancer. Eur J Cancer. 2008;44(3):391–9.
pubmed: 18083023
doi: 10.1016/j.ejca.2007.11.007
van Kruchten M, de Vries EG, Glaudemans AW, van Lanschot MC, van Faassen M, Kema IP, et al. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov. 2015;5(1):72–81.
pubmed: 25380844
doi: 10.1158/2159-8290.CD-14-0697
Cristofanilli M, Rugo HS, Im SA, Slamon DJ, Harbeck N, Bondarenko I, et al. Overall survival with palbociclib and fulvestrant in women with HR+/HER2- ABC: updated exploratory analyses of PALOMA-3, a double-blind, phase III randomized study. Clin Cancer Res. 2022;28(16):3433–42.
pubmed: 35552673
pmcid: 9662922
doi: 10.1158/1078-0432.CCR-22-0305
The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy – PubMed. https://pubmed.ncbi.nlm.nih.gov/32685029/ . Accessed 21 Sept 2023.
PLGA+Fe
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.
pubmed: 30119176
doi: 10.1016/j.biopha.2018.07.049
Gustalik J, Aebisher D, Bartusik-Aebisher D. Photodynamic therapy in breast cancer treatment. J Appl Biomed. 2022;20(3):98–105.
pubmed: 36218130
doi: 10.32725/jab.2022.013
Trayes KP, Cokenakes SEH. Breast cancer treatment. Am Fam Phys. 2021;104(2):171–8.
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther. 2021;36:102597.
pubmed: 34699982
doi: 10.1016/j.pdpdt.2021.102597
Zhu Z, Liu Q, Zhu K, Wang K, Lin L, Chen Y, et al. Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment. Acta Biomater. 2023;1(167):519–33.
doi: 10.1016/j.actbio.2023.06.009
Lioret V, Bellaye PS, Arnould C, Collin B, Decréau RA. Dual Cherenkov radiation-induced near-infrared luminescence imaging and photodynamic therapy toward tumor resection. J Med Chem. 2020;63(17):9446–56.
pubmed: 32706253
doi: 10.1021/acs.jmedchem.0c00625
Beiki D, Eggleston IM, Pourzand C. Daylight-PDT: everything under the sun. Biochem Soc Trans. 2022;50(2):975–85.
pubmed: 35385082
pmcid: 9162453
doi: 10.1042/BST20200822
Kolašinac R, Bier D, Schmitt L, Yabluchanskiy A, Neumaier B, Merkel R, et al. Delivery of the radionuclide 131I using cationic fusogenic liposomes as nanocarriers. Int J Mol Sci. 2021;22(1):457.
pubmed: 33466417
pmcid: 7796481
doi: 10.3390/ijms22010457