Relationship of device measured physical activity type and posture with cardiometabolic health markers: pooled dose-response associations from the Prospective Physical Activity, Sitting and Sleep Consortium.

Cardiometabolic health Individual participant meta-analysis Physical activity type Posture Running Sitting Stair climbing Standing Walking Wearables

Journal

Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777

Informations de publication

Date de publication:
13 Mar 2024
Historique:
received: 24 05 2023
accepted: 04 12 2023
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: aheadofprint

Résumé

The aim of this study was to examine the dose-response associations of device-measured physical activity types and postures (sitting and standing time) with cardiometabolic health. We conducted an individual participant harmonised meta-analysis of 12,095 adults (mean ± SD age 54.5±9.6 years; female participants 54.8%) from six cohorts with thigh-worn accelerometry data from the Prospective Physical Activity, Sitting and Sleep (ProPASS) Consortium. Associations of daily walking, stair climbing, running, standing and sitting time with a composite cardiometabolic health score (based on standardised z scores) and individual cardiometabolic markers (BMI, waist circumference, triglycerides, HDL-cholesterol, HbA We observed more favourable composite cardiometabolic health (i.e. z score <0) with approximately 64 min/day walking (z score [95% CI] -0.14 [-0.25, -0.02]) and 5 min/day stair climbing (-0.14 [-0.24, -0.03]). We observed an equivalent magnitude of association at 2.6 h/day standing. Any amount of running was associated with better composite cardiometabolic health. We did not observe an upper limit to the magnitude of the dose-response associations for any activity type or standing. There was an inverse dose-response association between sitting time and composite cardiometabolic health that became markedly less favourable when daily durations exceeded 12.1 h/day. Associations for sitting time were no longer significant after excluding participants with prevalent CVD or medication use. The dose-response pattern was generally consistent between activity and posture types and individual cardiometabolic health markers. In this first activity type-specific analysis of device-based physical activity, ~64 min/day of walking and ~5.0 min/day of stair climbing were associated with a favourable cardiometabolic risk profile. The deleterious associations of sitting time were fully attenuated after exclusion of participants with prevalent CVD and medication use. Our findings on cardiometabolic health and durations of different activities of daily living and posture may guide future interventions involving lifestyle modification.

Identifiants

pubmed: 38478050
doi: 10.1007/s00125-024-06090-y
pii: 10.1007/s00125-024-06090-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : British Heart Foundation
ID : SP/F/20/150002
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843
doi: 10.1016/j.diabres.2019.107843 pubmed: 31518657
Zhou B, Carrillo-Larco RM, Danaei G et al (2021) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398(10304):957–980. https://doi.org/10.1016/S0140-6736(21)01330-1
World Health Organization (2021) Obesity and overweight. Available from: www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight . Accessed 27 Aug 2023
NCD-RisC (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387(10026):1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X
doi: 10.1016/S0140-6736(16)30054-X
Visseren FLJ, Mach F, Smulders YM et al (2021) 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42(34):3227–3337. https://doi.org/10.1093/eurheartj/ehab484
doi: 10.1093/eurheartj/ehab484 pubmed: 34458905
Arnett DK, Khera A, Blumenthal RS (2021) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Part 1, Lifestyle and Behavioral Factors. JAMA Cardiol 4:1043–1044. https://doi.org/10.1001/jamacardio.2019.2604
doi: 10.1001/jamacardio.2019.2604
Dipietro L, Al-Ansari SS, Biddle SJH et al (2020) Advancing the global physical activity agenda: recommendations for future research by the 2020 WHO physical activity and sedentary behavior guidelines development group. Int J Behav Nutr Phys Act 17(1):143. https://doi.org/10.1186/s12966-020-01042-2
doi: 10.1186/s12966-020-01042-2 pubmed: 33239105 pmcid: 7690200
Sallis JF, Saelens BE (2000) Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport 71(sup2):1–14. https://doi.org/10.1080/02701367.2000.11082780
doi: 10.1080/02701367.2000.11082780 pubmed: 25680007
Ahmadi MN, Clare PJ, Katzmarzyk PT, Del Pozo Cruz B, Lee IM, Stamatakis E (2022) Vigorous physical activity, incident heart disease, and cancer: how little is enough. Eur Heart J 43(46):4801–4814. https://doi.org/10.1093/eurheartj/ehac572
doi: 10.1093/eurheartj/ehac572 pubmed: 36302460 pmcid: 9726449
Stamatakis E, Ahmadi MN, Gill JMR et al (2022) Association of wearable device-measured vigorous intermittent lifestyle physical activity with mortality. Nat Med 28:2521–2529. https://doi.org/10.1038/s41591-022-02100-x
doi: 10.1038/s41591-022-02100-x pubmed: 36482104 pmcid: 9800274
Del Pozo Cruz B, Ahmadi M, Naismith SL, Stamatakis E (2022) Association of daily step count and intensity with incident dementia in 78 430 adults living in the UK. JAMA Neurol 79(10):1059–1063. https://doi.org/10.1001/jamaneurol.2022.2672
Del Pozo Cruz B, Ahmadi MN, Lee IM, Stamatakis E (2022) Prospective associations of daily step counts and intensity with cancer and cardiovascular disease incidence and mortality and all-cause mortality. JAMA Int Med 182(11):1139–1148. https://doi.org/10.1001/jamainternmed.2022.4000
Clark B, Winker E, Ahmadi M, Trost S (2021) Comparison of three algorithms using thigh-worn accelerometers for classifying sitting, standing, and stepping in free-living office workers. J Meas Phys Behav 4(1):89–95. https://doi.org/10.1123/jmpb.2020-0019
doi: 10.1123/jmpb.2020-0019
Crowley P, Skotte J, Stamatakis E et al (2019) Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). Int J Behav Nutr Phys Act 16(1):1–7
doi: 10.1186/s12966-019-0835-0
Bellettiere J, Winkler EAH, Chastin SFM et al (2017) Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PLOS ONE 12(6):e0180119. https://doi.org/10.1371/journal.pone.0180119
doi: 10.1371/journal.pone.0180119 pubmed: 28662164 pmcid: 5491133
Hamer M, Stamatakis E, Steptoe A (2014) Effects of substituting sedentary time with physical activity on metabolic risk. Med Sci Sports Exerc 46(10):1946–1950. https://doi.org/10.1249/MSS.0000000000000317
doi: 10.1249/MSS.0000000000000317 pubmed: 24674977 pmcid: 4186723
Brakenridge CJ, Healy GN, Sethi P et al (2021) Contrasting compositions of sitting, standing, stepping, and sleeping time: associations with glycaemic outcome by diabetes risk. Int J Behav Nutr Phys Act 18(1):155. https://doi.org/10.1186/s12966-021-01209-5
doi: 10.1186/s12966-021-01209-5 pubmed: 34863205 pmcid: 8642848
Tsao CW, Aday AW, Almarzooq ZI et al (2023) Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123
doi: 10.1161/CIR.0000000000001123 pubmed: 36695182
Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK (2016) Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights 11:95–104. https://doi.org/10.4137/BMI.S38440
doi: 10.4137/BMI.S38440 pubmed: 27398023 pmcid: 4933534
Riley RD, Lambert PC, Abo-Zaid G (2010) Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340:c221. https://doi.org/10.1136/bmj.c221
doi: 10.1136/bmj.c221 pubmed: 20139215
Winkler EAH, Chastin S, Eakin EG et al (2018) Cardiometabolic impact of changing sitting, standing, and stepping in the workplace. Med Sci Sports Exerc 50(3):516–524. https://doi.org/10.1249/MSS.0000000000001453
doi: 10.1249/MSS.0000000000001453 pubmed: 29166319
Brierley ML, Chater AM, Smith LR, Bailey DP (2019) The effectiveness of sedentary behaviour reduction workplace interventions on cardiometabolic risk markers: a systematic review. Sports Med 49(11):1739–1767. https://doi.org/10.1007/s40279-019-01168-9
doi: 10.1007/s40279-019-01168-9 pubmed: 31429035
Bodker A, Visotcky A, Gutterman D, Widlansky ME, Kulinski J (2021) The impact of standing desks on cardiometabolic and vascular health. Vasc Med 26(4):374–382. https://doi.org/10.1177/1358863X211001934
doi: 10.1177/1358863X211001934 pubmed: 33813968 pmcid: 9578685
Stamatakis E, Clark BK, Ahmadi MN et al (2022) A Physical behaviour partnership from heaven: the prospective physical activity, sitting, and sleep consortium and the international society for the measurement of physical behaviour. J Meas Phys Behav 5(3):129–131. https://doi.org/10.1123/jmpb.2022-0027
doi: 10.1123/jmpb.2022-0027
Stamatakis E, Koster A, Hamer M et al (2020) Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). Br J Sports Med 54(8):435–437. https://doi.org/10.1136/bjsports-2019-100786
doi: 10.1136/bjsports-2019-100786 pubmed: 31076396
Lee C, Dobson AJ, Brown WJ et al (2005) Cohort profile: the Australian longitudinal study on women’s health. Int J Epidemiol 34(5):987–991. https://doi.org/10.1093/ije/dyi098
doi: 10.1093/ije/dyi098 pubmed: 15894591
Chan H-W, Dharmage S, Dobson A et al (2022) Cohort profile: a prospective Australian cohort study of women’s reproductive characteristics and risk of chronic disease from menarche to premenopause (M-PreM). BMJ Open 12(10):e064333. https://doi.org/10.1136/bmjopen-2022-064333
doi: 10.1136/bmjopen-2022-064333 pubmed: 36307154 pmcid: 9621184
Hamer M, Stamatakis E, Chastin S et al (2020) Feasibility of measuring sedentary time using data from a thigh-worn accelerometer: the 1970 British Cohort Study. Am J Epidemiol 189(9):963–971. https://doi.org/10.1093/aje/kwaa047
doi: 10.1093/aje/kwaa047 pubmed: 32219368 pmcid: 7443760
Jørgensen MB, Gupta N, Korshøj M et al (2019) The DPhacto cohort: an overview of technically measured physical activity at work and leisure in blue-collar sectors for practitioners and researchers. Appl Ergon 77:29–39. https://doi.org/10.1016/j.apergo.2019.01.003
doi: 10.1016/j.apergo.2019.01.003 pubmed: 30832776
Leskinen T, Pulakka A, Heinonen OJ et al (2018) Changes in non-occupational sedentary behaviours across the retirement transition: the Finnish Retirement and Aging (FIREA) study. J Epidemiol Community Health 72(8):695–701. https://doi.org/10.1136/jech-2017-209958
doi: 10.1136/jech-2017-209958 pubmed: 29636399
Maessen MF, Eijsvogels TM, Verheggen RJ, Hopman MT, Verbeek AL, Vegt FD (2014) Entering a new era of body indices: the feasibility of a body shape index and body roundness index to identify cardiovascular health status. PloS one 9(9):e107212. https://doi.org/10.1371/journal.pone.0107212
doi: 10.1371/journal.pone.0107212 pubmed: 25229394 pmcid: 4167703
Schram MT, Sep SJ, Van Der Kallen CJ et al (2014) The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol 29:439–451. https://doi.org/10.1007/s10654-014-9889-0
doi: 10.1007/s10654-014-9889-0 pubmed: 24756374
Hamer M, Stamatakis E (2020) The descriptive epidemiology of standing activity during free-living in 5412 middle-aged adults: the 1970 British cohort study. J Epidemiol Community Health 74(9):757–760. https://doi.org/10.1136/jech-2020-213783
doi: 10.1136/jech-2020-213783 pubmed: 32350124
Hettiarachchi P (2023) Ergo-Tools/ActiPASS: Release v1.40 or older (v1.40_or_old). Zenodo. https://doi.org/10.5281/zenodo.7701373
Ahmadi MN, Nathan N, Sutherland R, Wolfenden L, Trost SG (2020) Non-wear or sleep? Evaluation of five non-wear detection algorithms for raw accelerometer data. J Sports Sci 38(4):399–404. https://doi.org/10.1080/02640414.2019.1703301
doi: 10.1080/02640414.2019.1703301 pubmed: 31826746
van Hees VT, Fang Z, Langford J et al (2014) Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol (1985) 117(7):738–744. https://doi.org/10.1152/japplphysiol.00421.2014
doi: 10.1152/japplphysiol.00421.2014 pubmed: 25103964
Skotte J, Korshøj M, Kristiansen J, Hanisch C, Holtermann A (2014) Detection of physical activity types using triaxial accelerometers. J Phys Act Health 11(1):76–84. https://doi.org/10.1123/jpah.2011-0347
doi: 10.1123/jpah.2011-0347 pubmed: 23249722
Johansson PJ, Crowley P, Axelsson J et al (2023) Development and performance of a sleep estimation algorithm using a single accelerometer placed on the thigh: an evaluation against polysomnography. J Sleep Res 32:e13725. https://doi.org/10.1111/jsr.13725
doi: 10.1111/jsr.13725 pubmed: 36167935
Stamatakis E, Hamer M, Mishra GD (2012) Early adulthood television viewing and cardiometabolic risk profiles in early middle age: results from a population, prospective cohort study. Diabetologia 55(2):311–320. https://doi.org/10.1007/s00125-011-2358-3
doi: 10.1007/s00125-011-2358-3 pubmed: 22057195
März W, Kleber ME, Scharnagl H et al (2017) HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 106(9):663–675. https://doi.org/10.1007/s00392-017-1106-1
doi: 10.1007/s00392-017-1106-1 pubmed: 28342064 pmcid: 5565659
World Health Organization (2008) Waist circumference and waist-hip ratio: report of a WHO expert consultation. WHO, Geneva
Chastin SFM, Egerton T, Leask C, Stamatakis E (2015) Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity 23(9):1800–1810. https://doi.org/10.1002/oby.21180
doi: 10.1002/oby.21180 pubmed: 26308477
Leskinen T, Passos VL, Dagnelie PC et al (2023) Daily physical activity patterns and their associations with cardiometabolic biomarkers: The Maastricht Study. Med Sci Sports Exerc 55(5):837–846. https://doi.org/10.1249/MSS.0000000000003108
Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE (2019) Association of step volume and intensity with all-cause mortality in older women. JAMA Int Med 179(8):1105–1112. https://doi.org/10.1001/jamainternmed.2019.0899
doi: 10.1001/jamainternmed.2019.0899
Van Buuren S, Groothuis-Oudshoorn K (2011) Multivariate imputation by chained equations. J Stat Softw 45(3):1–67
doi: 10.18637/jss.v045.i03
Abdullah SM, Defina LF, Leonard D et al (2018) Long-term association of low-density lipoprotein cholesterol with cardiovascular mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease. Circulation 138(21):2315–2325. https://doi.org/10.1161/CIRCULATIONAHA.118.034273
doi: 10.1161/CIRCULATIONAHA.118.034273 pubmed: 30571575
Pencina KM, Thanassoulis G, Wilkins JT et al (2019) Trajectories of non-HDL cholesterol across midlife: implications for cardiovascular prevention. J Am Coll Cardiol 74(1):70–79. https://doi.org/10.1016/j.jacc.2019.04.047
doi: 10.1016/j.jacc.2019.04.047 pubmed: 31272554 pmcid: 7346311
Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12
doi: 10.1249/MSS.0b013e31821ece12 pubmed: 21681120
Rafiei H, Omidian K, Myette-Cote E, Little JP (2021) Metabolic effect of breaking up prolonged sitting with stair climbing exercise snacks. Med Sci Sports Exerc 53(1):150–158. https://doi.org/10.1249/MSS.0000000000002431
doi: 10.1249/MSS.0000000000002431 pubmed: 32555024
Boreham CAG (2005) Training effects of short bouts of stair climbing on cardiorespiratory fitness, blood lipids, and homocysteine in sedentary young women. Br J Sports Med 39(9):590–593. https://doi.org/10.1136/bjsm.2002.001131
doi: 10.1136/bjsm.2002.001131 pubmed: 16118293 pmcid: 1725304
Allison MK, Baglole JH, Martin BJ, Macinnis MJ, Gurd BJ, Gibala MJ (2017) Brief intense stair climbing improves cardiorespiratory fitness. Med Sci Sports Exerc 49(2):298–307. https://doi.org/10.1249/MSS.0000000000001188
doi: 10.1249/MSS.0000000000001188 pubmed: 28009784
Gibala MJ (2021) Physiological basis of interval training for performance enhancement. Exp Physiol 106(12):2324–2327. https://doi.org/10.1113/EP088190
doi: 10.1113/EP088190 pubmed: 32362039
Honda H, Igaki M, Hatanaka Y et al (2016) Stair climbing/descending exercise for a short time decreases blood glucose levels after a meal in participants with type 2 diabetes. BMJ Open Diabetes Res Care 4(1):e000232. https://doi.org/10.1136/bmjdrc-2016-000232
doi: 10.1136/bmjdrc-2016-000232 pubmed: 27547414 pmcid: 4964213
Gay JL, Buchner DM, Erickson ML, Lauture A (2018) Effect of short bouts of high intensity activity on glucose among adults with prediabetes: a pilot randomized crossover study. Diabetes Res Clin Pract 141:168–174. https://doi.org/10.1016/j.diabres.2018.04.045
doi: 10.1016/j.diabres.2018.04.045 pubmed: 29746878
Moore J, Salmons H, Vinoskey C, Kressler J (2020) A single one-minute, comfortable paced, stair-climbing bout reduces postprandial glucose following a mixed meal. Nutr Metab Cardiovasc Dis 30(11):1967–1972. https://doi.org/10.1016/j.numecd.2020.06.020
doi: 10.1016/j.numecd.2020.06.020 pubmed: 32811738
Dunford EC, Valentino SE, Dubberley J et al (2021) Brief vigorous stair climbing effectively improves cardiorespiratory fitness in patients with coronary artery disease: a randomized trial. Front Sports Act Living 3:630912. https://doi.org/10.3389/fspor.2021.630912
doi: 10.3389/fspor.2021.630912 pubmed: 33665614 pmcid: 7921461
Fawzy ME, Fathala A, Osman A et al (2008) Twenty-two years of follow-up results of balloon angioplasty for discreet native coarctation of the aorta in adolescents and adults. Am Heart J 156(5):910–917. https://doi.org/10.1016/j.ahj.2008.06.037
doi: 10.1016/j.ahj.2008.06.037 pubmed: 19061706
Sanchez-Lastra MA, Ding D, Dalene KE, Pozo Cruz B, Ekelund U, Tarp J (2021) Stair climbing and mortality: a prospective cohort study from the UK Biobank. J Cachexia Sarcopenia Muscle 12(2):298–307. https://doi.org/10.1002/jcsm.12679
doi: 10.1002/jcsm.12679 pubmed: 33543604 pmcid: 8061405
Ahmadi MN, Hamer M, Gill JMR et al (2023) Brief bouts of device-measured intermittent lifestyle physical activity and its association with major adverse cardiovascular events and mortality in people who do not exercise: a prospective cohort study. Lancet Public Health 8(10):e800–e810. https://doi.org/10.1016/S2468-2667(23)00183-4
doi: 10.1016/S2468-2667(23)00183-4 pubmed: 37777289
Buffey AJ, Herring MP, Langley CK, Donnelly AE, Carson BP (2022) The acute effects of interrupting prolonged sitting time in adults with standing and light-intensity walking on biomarkers of cardiometabolic health in adults: a systematic review and meta-analysis. Sports Med 52(8):1765–1787. https://doi.org/10.1007/s40279-022-01649-4
doi: 10.1007/s40279-022-01649-4 pubmed: 35147898 pmcid: 9325803
Nieste I, Franssen WMA, Spaas J, Bruckers L, Savelberg HHCM, Eijnde BO (2021) Lifestyle interventions to reduce sedentary behaviour in clinical populations: a systematic review and meta-analysis of different strategies and effects on cardiometabolic health. Prev Med 148:106593. https://doi.org/10.1016/j.ypmed.2021.106593
doi: 10.1016/j.ypmed.2021.106593 pubmed: 33930434
Billinger SA, Arena R, Bernhardt J et al (2014) Physical activity and exercise recommendations for stroke survivors. Stroke 45(8):2532–2553. https://doi.org/10.1161/STR.0000000000000022
doi: 10.1161/STR.0000000000000022 pubmed: 24846875
Ha FJ, Hare DL, Cameron JD, Toukhsati SR (2018) Heart failure and exercise: a narrative review of the role of self-efficacy. Heart Lung Circ 27(1):22–27. https://doi.org/10.1016/j.hlc.2017.08.012
doi: 10.1016/j.hlc.2017.08.012 pubmed: 28969981
Van Bakel BMA, Kroesen SH, Bakker EA, Van Miltenburg RV, Günal A, Scheepmaker A et al (2023) Effectiveness of an intervention to reduce sedentary behaviour as a personalised secondary prevention strategy for patients with coronary artery disease: main outcomes of the SIT LESS randomised clinical trial. Int J Behav Nutr Phys Act 20(1):17. https://doi.org/10.1186/s12966-023-01419-z
doi: 10.1186/s12966-023-01419-z pubmed: 36788615 pmcid: 9927064
Bakker EA, Van Bakel BMA, Aengevaeren WRM et al (2021) Sedentary behaviour in cardiovascular disease patients: risk group identification and the impact of cardiac rehabilitation. Int J Cardiol 326:194–201. https://doi.org/10.1016/j.ijcard.2020.11.014
doi: 10.1016/j.ijcard.2020.11.014 pubmed: 33186667
Bassett DR, Vachon JA, Kirkland AO, Howley ET, Duncan GE, Johnson KR (1997) Energy cost of stair climbing and descending on the college alumnus questionnaire. Med Sci Sports Exerc 29(9):1250–1254. https://doi.org/10.1097/00005768-199709000-00019
doi: 10.1097/00005768-199709000-00019 pubmed: 9309638
Stamatakis E, Kelly P, Strain T, Murtagh EM, Ding D, Murphy MH (2018) Self-rated walking pace and all-cause, cardiovascular disease and cancer mortality: individual participant pooled analysis of 50 225 walkers from 11 population British cohorts. Br J Sports Med 52(12):761–768. https://doi.org/10.1136/bjsports-2017-098677
doi: 10.1136/bjsports-2017-098677 pubmed: 29858463
Celis-Morales CA, Gray S, Petermann F et al (2019) Walking pace is associated with lower risk of all-cause and cause-specific mortality. Med Sci Sports Exerc 51(3):472–480. https://doi.org/10.1249/MSS.0000000000001795
doi: 10.1249/MSS.0000000000001795 pubmed: 30303933
Wewege M, Van Den Berg R, Ward RE, Keech A (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev 18(6):635–646. https://doi.org/10.1111/obr.12532
doi: 10.1111/obr.12532 pubmed: 28401638
Sultana RN, Sabag A, Keating SE, Johnson NA (2019) The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and meta-analysis. Sports Med 49(11):1687–1721. https://doi.org/10.1007/s40279-019-01167-w
doi: 10.1007/s40279-019-01167-w pubmed: 31401727
Costa EC, Hay JL, Kehler DS et al (2018) Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med 48(9):2127–2142. https://doi.org/10.1007/s40279-018-0944-y
doi: 10.1007/s40279-018-0944-y pubmed: 29949110
Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH (2017) Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev 97(2):495–528. https://doi.org/10.1152/physrev.00014.2016
doi: 10.1152/physrev.00014.2016 pubmed: 28151424 pmcid: 5539408
Remie CME, Janssens GE, Bilet L et al (2021) Sitting less elicits metabolic responses similar to exercise and enhances insulin sensitivity in postmenopausal women. Diabetologia 64(12):2817–2828. https://doi.org/10.1007/s00125-021-05558-5
doi: 10.1007/s00125-021-05558-5 pubmed: 34510226 pmcid: 8435176
Duvivier BMFM, Schaper NC, Hesselink MKC et al (2017) Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia 60(3):490–498. https://doi.org/10.1007/s00125-016-4161-7
doi: 10.1007/s00125-016-4161-7 pubmed: 27904925
Henson J, Davies MJ, Bodicoat DH et al (2016) Breaking up prolonged sitting with standing or walking attenuates the postprandial metabolic response in postmenopausal women: a randomized acute study. Diabetes Care 39(1):130–138. https://doi.org/10.2337/dc15-1240
doi: 10.2337/dc15-1240 pubmed: 26628415
Healy GN, Winkler EA, Eakin EG et al (2017) A cluster RCT to reduce workers’ sitting time: impact on cardiometabolic biomarkers. Med Sci Sports Exerc 49(10):2032–2039. https://doi.org/10.1249/MSS.0000000000001328
doi: 10.1249/MSS.0000000000001328 pubmed: 28538025
Coenen P, Willenberg L, Parry S et al (2018) Associations of occupational standing with musculoskeletal symptoms: a systematic review with meta-analysis. Br J Sports Med 52(3):176–183. https://doi.org/10.1136/bjsports-2016-096795
doi: 10.1136/bjsports-2016-096795 pubmed: 27884862
Kulinski JP, Khera A, Ayers CR et al (2014) Association between cardiorespiratory fitness and accelerometer-derived physical activity and sedentary time in the general population. Mayo Clin Proc 89(8):1063–1071. https://doi.org/10.1016/j.mayocp.2014.04.019
doi: 10.1016/j.mayocp.2014.04.019 pubmed: 25012770
Knaeps S, Bourgois JG, Charlier R, Mertens E, Lefevre J, Wijndaele K (2018) Ten-year change in sedentary behaviour, moderate-to-vigorous physical activity, cardiorespiratory fitness and cardiometabolic risk: independent associations and mediation analysis. Br J Sports Med 52(16):1063–1068. https://doi.org/10.1136/bjsports-2016-096083
doi: 10.1136/bjsports-2016-096083 pubmed: 27491779
Carter S, Hartman Y, Holder S, Thijssen DH, Hopkins ND (2017) Sedentary behavior and cardiovascular disease risk: mediating mechanisms. Exerc Sport Sci Rev 45(2):80–86. https://doi.org/10.1249/JES.0000000000000106
doi: 10.1249/JES.0000000000000106 pubmed: 28118158
Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN (2019) Sedentary behavior, exercise, and cardiovascular health. Circ Res 124(5):799–815. https://doi.org/10.1161/CIRCRESAHA.118.312669
doi: 10.1161/CIRCRESAHA.118.312669 pubmed: 30817262
Sassen B, Cornelissen VA, Kiers H, Wittink H, Kok G, Vanhees L (2009) Physical fitness matters more than physical activity in controlling cardiovascular disease risk factors. Eur J Cardiovasc Prev Rehabil 16(6):677–683. https://doi.org/10.1097/HJR.0b013e3283312e94
doi: 10.1097/HJR.0b013e3283312e94 pubmed: 19734792
Shuval K, Finley CE, Barlow CE, Gabriel KP, Leonard D, Kohl HW 3rd (2014) Sedentary behavior, cardiorespiratory fitness, physical activity, and cardiometabolic risk in men: the Cooper Center longitudinal study. Mayo Clin Proc 89(8):1052–1062. https://doi.org/10.1016/j.mayocp.2014.04.026
doi: 10.1016/j.mayocp.2014.04.026 pubmed: 25034308
Ellis K, Kerr J, Godbole S, Staudenmayer J, Lanckriet G (2016) Hip and wrist accelerometer algorithms for free-living behavior classification. Med Sci Sports Exerc 48(5):933–940. https://doi.org/10.1249/MSS.0000000000000840
doi: 10.1249/MSS.0000000000000840 pubmed: 26673126 pmcid: 4833514
Ioannidis J (2017) Next-generation systematic reviews: prospective meta-analysis, individual-level data, networks and umbrella reviews. Br J Sports Med 51(20):1456–1458. https://doi.org/10.1136/bjsports-2017-097621
doi: 10.1136/bjsports-2017-097621 pubmed: 28223307
Si S, Tewara MA, Li Y et al (2020) Causal pathways from body components and regional fat to extensive metabolic phenotypes: a Mendelian randomization study. Obesity 28(8):1536–1549. https://doi.org/10.1002/oby.22857
doi: 10.1002/oby.22857 pubmed: 32935532

Auteurs

Matthew N Ahmadi (MN)

Mackenzie Wearables Research Hub, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. matthew.ahmadi@sydney.edu.au.
School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia. matthew.ahmadi@sydney.edu.au.

Joanna M Blodgett (JM)

Institute of Sport, Exercise and Health, Division of Surgery and Interventional Sciences, UCL, London, UK.

Andrew J Atkin (AJ)

School of Health Sciences and Norwich Epidemiology Centre, University of East Anglia, Norwich, UK.

Hsiu-Wen Chan (HW)

School of Public Health, The University of Queensland, Brisbane, QLD, Australia.

Borja Del Pozo Cruz (B)

Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, University of Cádiz, Cádiz, Spain.
Faculty of Education, University of Cádiz, Cádiz, Spain.

Kristin Suorsa (K)

Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland.
Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.

Esmee A Bakker (EA)

Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.

Richard M Pulsford (RM)

Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Gregore I Mielke (GI)

School of Public Health, The University of Queensland, Brisbane, QLD, Australia.

Peter J Johansson (PJ)

Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden.

Pasan Hettiarachchi (P)

Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.

Dick H J Thijssen (DHJ)

Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.

Sari Stenholm (S)

Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland.
Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.

Gita D Mishra (GD)

School of Public Health, The University of Queensland, Brisbane, QLD, Australia.

Armando Teixeira-Pinot (A)

School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.

Vegar Rangul (V)

HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Lauren B Sherar (LB)

School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.

Ulf Ekelund (U)

Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway.
Department of Chronic Diseases, Norwegian Public Health Institute, Oslo, Norway.

Alun D Hughes (AD)

MRC Unit for Lifelong Health and Ageing, UCL Institute of Cardiovascular Science, UCL, London, UK.
UCL BHF Research Accelerator, University College London, London, UK.
University College London Hospitals NIHR Biomedical Research Centre, London, UK.

I-Min Lee (IM)

Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Andreas Holtermann (A)

National Research Centre for the Working Environment, Copenhagen, Denmark.

Annemarie Koster (A)

Department of Social Medicine, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands.

Mark Hamer (M)

Institute of Sport, Exercise and Health, Division of Surgery and Interventional Sciences, UCL, London, UK.

Emmanuel Stamatakis (E)

Mackenzie Wearables Research Hub, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.

Classifications MeSH