A computational model of motion sickness dynamics during passive self-motion in the dark.

Orientation perception Predictive modeling Sensory conflict Spatial disorientation Vestibular

Journal

Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312

Informations de publication

Date de publication:
15 Mar 2024
Historique:
received: 15 12 2023
accepted: 08 02 2024
medline: 15 3 2024
pubmed: 15 3 2024
entrez: 15 3 2024
Statut: aheadofprint

Résumé

Predicting the time course of motion sickness symptoms enables the evaluation of provocative stimuli and the development of countermeasures for reducing symptom severity. In pursuit of this goal, we present an Observer-driven model of motion sickness for passive motions in the dark. Constructed in two stages, this model predicts motion sickness symptoms by bridging sensory conflict (i.e., differences between actual and expected sensory signals) arising from the Observer model of spatial orientation perception (stage 1) to Oman's model of motion sickness symptom dynamics (stage 2; presented in 1982 and 1990) through a proposed "Normalized Innovation Squared" statistic. The model outputs the expected temporal development of human motion sickness symptom magnitudes (mapped to the Misery Scale) at a population level, due to arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained model parameters using individual subject responses collected during fore-aft translations and off-vertical axis of rotation motions. Improving on prior efforts, we only used datasets with experimental conditions congruent with the perceptual stage (i.e., adequately provided passive motions without visual cues) to inform the model. We assessed model performance by predicting an unseen validation dataset, producing a Q

Identifiants

pubmed: 38489025
doi: 10.1007/s00221-024-06804-z
pii: 10.1007/s00221-024-06804-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Space Technology Mission Directorate
ID : 80NSSC20K1202

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Bijveld MMC, Bronstein AM, Golding JF, Gresty MA (2008) Nauseogenicity of off-vertical axis rotation vs. equivalent visual motion. Aviat Space Environ Med 79(7):661–665. https://doi.org/10.3357/ASEM.2241.2008
doi: 10.3357/ASEM.2241.2008 pubmed: 18619124
Bos JE (2011) Nuancing the relationship between motion sickness and postural stability. Displays 32(4):189–193. https://doi.org/10.1016/j.displa.2010.09.005
doi: 10.1016/j.displa.2010.09.005
Bos JE, Bles W (1998) Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5):537–542. https://doi.org/10.1016/S0361-9230(98)00088-4
doi: 10.1016/S0361-9230(98)00088-4 pubmed: 10052585
Bos JE, MacKinnon SN, Patterson A (2005) Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat Space Environ Med 76(12):8
Bos JE, Diels C, Souman JL (2022) Beyond seasickness: a motivated call for a new motion sickness standard across motion environments. Vibration 5(4):755–769. https://doi.org/10.3390/vibration5040044
doi: 10.3390/vibration5040044
Brooks JX, Cullen KE (2009) Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci 29(34):10499–10511. https://doi.org/10.1523/JNEUROSCI.1937-09.2009
doi: 10.1523/JNEUROSCI.1937-09.2009 pubmed: 19710303 pmcid: 3311469
Cian C, Ohlmann T, Ceyte H, Gresty MA, Golding JF (2011) Off vertical axis rotation motion sickness and field dependence. Aviat Space Environ Med 82(10):959–963. https://doi.org/10.3357/ASEM.3049.2011
doi: 10.3357/ASEM.3049.2011 pubmed: 21961400
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2015a) Human perceptual overestimation of whole body roll tilt in hypergravity. J Neurophysiol 113(7):2062–2077. https://doi.org/10.1152/jn.00095.2014
doi: 10.1152/jn.00095.2014 pubmed: 25540216
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2015b) Modeling human perception of orientation in altered gravity. Front Syst Neurosci 9:68. https://doi.org/10.3389/fnsys.2015.00068
doi: 10.3389/fnsys.2015.00068 pubmed: 25999822 pmcid: 4419856
Clark TK, Newman MC, Karmali F, Oman CM, Merfeld DM (2019) Mathematical models for dynamic, multisensory spatial orientation perception. In: Progress in brain research, vol 248, pp 65–90. https://doi.org/10.1016/bs.pbr.2019.04.014
Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial temporal properties of velocity storage. Exp Brain Res 151(2):173–189. https://doi.org/10.1007/s00221-003-1479-4
doi: 10.1007/s00221-003-1479-4 pubmed: 12783152
Dai M, Sofroniou S, Kunin M, Raphan T, Cohen B (2010) Motion sickness induced by off-vertical axis rotation (OVAR). Exp Brain Res 204(2):207–222. https://doi.org/10.1007/s00221-010-2305-4
doi: 10.1007/s00221-010-2305-4 pubmed: 20535456 pmcid: 3181161
Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the Space Shuttle. Aviat Space Environ Med 59(12):1185–1189
pubmed: 3240221
Davis S, Nesbitt K, Nalivaiko E (2014) A systematic review of cybersickness. In: Proceedings of the 2014 conference on interactive entertainment, pp 1–9. https://doi.org/10.1145/2677758.2677780
de Winkel KN, Irmak T, Kotian V, Pool DM, Happee R (2022) Relating individual motion sickness levels to subjective discomfort ratings. Exp Brain Res 240(4):1231–1240. https://doi.org/10.1007/s00221-022-06334-6
doi: 10.1007/s00221-022-06334-6 pubmed: 35192043 pmcid: 8861616
Denise P, Etard O, Zupan L, Darlot C (1996) Motion sickness during off-vertical axis rotation: prediction by a model of sensory interactions and correlation with other forms of motion sickness. Neurosci Lett 203(3):183–186. https://doi.org/10.1016/0304-3940(96)12303-X
doi: 10.1016/0304-3940(96)12303-X pubmed: 8742023
Donohew BE, Griffin MJ (2004) Motion sickness: effect of the frequency of lateral oscillation. Aviat Space Environ Med 75(8):8
Donohew BE, Griffin MJ (2009) Motion sickness with fully roll-compensated lateral oscillation: effect of oscillation frequency. Aviat Space Environ Med 80(2):94–101. https://doi.org/10.3357/ASEM.2345.2009
doi: 10.3357/ASEM.2345.2009 pubmed: 19198194
Golding JF (2016) Motion sickness. In: Handbook of clinical neurology, vol 137. Elsevier, pp 371–390. https://doi.org/10.1016/B978-0-444-63437-5.00027-3
Golding JF, Phil D, Markey HM, Stott RR (1995) The effects of motion direction, body axis, and posture on motion sickness induced by low frequency linear oscillation. Aviat Space Environ Med 66(11):1046–1051
pubmed: 8588793
Golding JF, Mueller A, Gresty M (2001) A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat Space Environ Med 72(3):188–192
pubmed: 11277284
Griffin MJ, Mills KL (2002a) Effect of frequency and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 73(6):537–543
pubmed: 12056668
Griffin MJ, Mills KL (2002b) Effect of magnitude and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 73(7):640–646
pubmed: 12137099
Groen EL, Clark TK, Houben MMJ, Bos JE, Mumaw RJ (2022) Objective evaluation of the somatogravic illusion from flight data of an airplane accident. Safety 8(4):Article 4. https://doi.org/10.3390/safety8040085
doi: 10.3390/safety8040085
Guedry FE, Benson AJ, Moore HJ (1982) Influence of a visual display and frequency of whole-body angular oscillation on incidence of motion sickness. Aviat Space Environ Med 53(6):564–569
pubmed: 7115240
Heer M, Paloski WH (2006) Space motion sickness: Incidence, etiology, and countermeasures. Auton Neurosci 129(1–2):77–79. https://doi.org/10.1016/j.autneu.2006.07.014
doi: 10.1016/j.autneu.2006.07.014 pubmed: 16935570
Irmak T, de Winkel KN, Pool DM, Bülthoff HH, Happee R (2021) Individual motion perception parameters and motion sickness frequency sensitivity in fore-aft motion. Exp Brain Res 239(6):1727–1745. https://doi.org/10.1007/s00221-021-06093-w
doi: 10.1007/s00221-021-06093-w pubmed: 33779793 pmcid: 8006642
Irmak T, Kotian V, Happee R, de Winkel KN, Pool DM (2022) Amplitude and temporal dynamics of motion sickness. Front Syst Neurosci 16:866503. https://doi.org/10.3389/fnsys.2022.866503
doi: 10.3389/fnsys.2022.866503 pubmed: 35615427 pmcid: 9126086
Irmak T, Pool DM, De Winkel KN, Happee R (2023) Validating models of sensory conflict and perception for motion sickness prediction. Biol Cybern. https://doi.org/10.1007/s00422-023-00959-8
doi: 10.1007/s00422-023-00959-8 pubmed: 36971844 pmcid: 10258185
Jamali M, Sadeghi SG, Cullen KE (2009) Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. J Neurophysiol 101(1):141–149. https://doi.org/10.1152/jn.91066.2008
doi: 10.1152/jn.91066.2008 pubmed: 18971293 pmcid: 3815216
Johnson WH, Mayne JW (1953) Stimulus required to produce motion sickness; restriction of head movement as a preventive of airsickness; field studies on airborne troops. J Aviat Med 24(5):400–411 (passim)
pubmed: 13108839
Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9(2):83–87. https://doi.org/10.3233/VES-1999-9202
doi: 10.3233/VES-1999-9202 pubmed: 10378179
Kamiji N, Kurata Y, Wada T, Doi S (2007) Modeling and validation of carsickness mechanism. SICE Annu Conf 2007:1138–1143. https://doi.org/10.1109/SICE.2007.4421156
doi: 10.1109/SICE.2007.4421156
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203. https://doi.org/10.1207/s15327108ijap0303_3
doi: 10.1207/s15327108ijap0303_3
Khalid H, Turan O, Bos JE (2011a) Theory of a subjective vertical–horizontal conflict physiological motion sickness model for contemporary ships. J Mar Sci Technol 16(2):214–225. https://doi.org/10.1007/s00773-010-0113-y
doi: 10.1007/s00773-010-0113-y
Khalid H, Turan O, Bos JE, Incecik A (2011b) Application of the subjective vertical–horizontal-conflict physiological motion sickness model to the field trials of contemporary vessels. Ocean Eng 38(1):22–33. https://doi.org/10.1016/j.oceaneng.2010.09.008
doi: 10.1016/j.oceaneng.2010.09.008
Kolasinski EM (1995) Simulator sickness in virtual environments. U.S. Army Research Institute for the Behavioral and Social Sciences
Kravets VG, Dixon JB, Ahmed NR, Clark TK (2021) COMPASS: computations for orientation and motion perception in altered sensorimotor states. Front Neural Circuits. https://doi.org/10.3389/fncir.2021.757817
doi: 10.3389/fncir.2021.757817 pubmed: 34720889 pmcid: 8553968
Kravets VG, Ahmed N, Clark TK (2022) A Rao-Blackwellized particle filter for modeling neurovestibular adaptation to altered gravity, p 9
Kuiper OX, Bos JE, Schmidt EA, Diels C, Wolter S (2020) Knowing what’s coming: unpredictable motion causes more motion sickness. Hum Factors 62(8):1339–1348. https://doi.org/10.1177/0018720819876139
doi: 10.1177/0018720819876139 pubmed: 31590575
Lackner JR (2014) Motion sickness: more than nausea and vomiting. Exp Brain Res 232(8):2493–2510. https://doi.org/10.1007/s00221-014-4008-8
doi: 10.1007/s00221-014-4008-8 pubmed: 24961738 pmcid: 4112051
Lackner JR, DiZio P (2006) Space motion sickness. Exp Brain Res 175(3):377–399. https://doi.org/10.1007/s00221-006-0697-y
doi: 10.1007/s00221-006-0697-y pubmed: 17021896
Lackner JR, Graybiel A (1987) Head movements in low and high gravitoinertial force environments elicit motion sickness: Implications for space motion sickness. Aviat Space Environ Med 58(9 Pt 2):A212-217
pubmed: 3675494
Laurens J (2022) The otolith vermis: a systems neuroscience theory of the Nodulus and Uvula. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2022.886284
doi: 10.3389/fnsys.2022.886284 pubmed: 36185824 pmcid: 9520001
Lawson BD (2014). Chapter 24. Motion sickness scaling. In: Handbook of virtual environments, pp 601–626
Leger A, Money KE, Landolt JP, Cheung BS, Rodden BE (1981) Motion sickness caused by rotations about Earth-horizontal and Earth-vertical axes. J Appl Physiol 50(3):469–477. https://doi.org/10.1152/jappl.1981.50.3.469
doi: 10.1152/jappl.1981.50.3.469 pubmed: 7251437
Luenberger D (1971) An introduction to observers. IEEE Trans Autom Control 16(6):596–602. https://doi.org/10.1109/TAC.1971.1099826
doi: 10.1109/TAC.1971.1099826
Lundberg S, Lee S-I (2017) A unified approach to interpreting model predictions. arXiv:1705.07874 [cs, stat]
Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Vestibular system part 2: psychophysics, applied aspects and general interpretations, vol. 6/2, pp 493–580. Springer, Berlin. https://doi.org/10.1007/978-3-642-65920-1_14
Merfeld DM, Young LR, Oman CM, Shelhamert MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3(2):141–161. https://doi.org/10.3233/VES-1993-3204
doi: 10.3233/VES-1993-3204 pubmed: 8275250
Mills KL, Griffin MJ (2000) Effect of seating, vision and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 71(10):996–1002
pubmed: 11051306
Murdin L, Chamberlain F, Cheema S, Arshad Q, Gresty MA, Golding JF, Bronstein A (2015) Motion sickness in migraine and vestibular disorders: figure 1. J Neurol Neurosurg Psychiatry 86(5):585–587. https://doi.org/10.1136/jnnp-2014-308331
doi: 10.1136/jnnp-2014-308331 pubmed: 25118205
Newman MC (2009) A multisensory observer model for human spatial orientation perception. Massachusetts Institute of Technology
O’Hanlon J, McCauley M (1974) Motion sickness incidence as a function of vertical sinusoidal motion.pdf. Aerosp Med Hum Perform 45:366–369
Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. https://go.exlibris.link/rJjgfgfW
Oman CM (1987) Spacelab experiments on space motion sickness. Acta Astronaut 15(1):55–66. https://doi.org/10.1016/0094-5765(87)90066-X
doi: 10.1016/0094-5765(87)90066-X pubmed: 11538841
Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68(2):294–303. https://doi.org/10.1139/y90-044
doi: 10.1139/y90-044 pubmed: 2178753
Oman CM, Cullen KE (2014) Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp Brain Res 232(8):2483–2492. https://doi.org/10.1007/s00221-014-3973-2
doi: 10.1007/s00221-014-3973-2 pubmed: 24838552 pmcid: 4130651
Ortega HJ, Harm DL, Reschke MF (2019) Space and entry motion sickness. In: Barratt MR, Baker ES, Pool SL (eds) Principles of clinical medicine for space flight. Springer, New York, pp 441–456. https://doi.org/10.1007/978-1-4939-9889-0_14
Reason JT, Brand JJ (1975) Motion sickness. Academic Press, pp vii, 310
Reuten AJC, Nooij SAE, Bos JE, Smeets JBJ (2021) How feelings of unpleasantness develop during the progression of motion sickness symptoms. Exp Brain Res 239(12):3615–3624. https://doi.org/10.1007/s00221-021-06226-1
doi: 10.1007/s00221-021-06226-1 pubmed: 34595572 pmcid: 8599357
Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3(3):195–240. https://doi.org/10.1207/s15326969eco0303_2
doi: 10.1207/s15326969eco0303_2
Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24(9):2102–2111. https://doi.org/10.1523/JNEUROSCI.3988-03.2004
doi: 10.1523/JNEUROSCI.3988-03.2004 pubmed: 14999061 pmcid: 6730417
Stanney K, Fidopiastis C, Foster L (2020) Virtual reality is sexist: but it does not have to be. Front Robot AI 7:4. https://doi.org/10.3389/frobt.2020.00004
doi: 10.3389/frobt.2020.00004 pubmed: 33501173 pmcid: 7805626
Turan O, Verveniotis C, Khalid H (2009) Motion sickness onboard ships: subjective vertical theory and its application to full-scale trials. J Mar Sci Technol 14(4):409–416. https://doi.org/10.1007/s00773-009-0064-3
doi: 10.1007/s00773-009-0064-3
Wada T, Fujisawa S, Doi S (2018) Analysis of driver’s head tilt using a mathematical model of motion sickness. Int J Ind Ergon 63:89–97. https://doi.org/10.1016/j.ergon.2016.11.003
doi: 10.1016/j.ergon.2016.11.003
Wada T, Kawano J, Okafuji Y, Takamatsu A, Makita M (2020a) A computational model of motion sickness considering visual and vestibular information. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC), pp 1758–1763. https://doi.org/10.1109/SMC42975.2020.9283350
Wada T, Kawano J, Okafuji Y, Takamatsu A, Makita M (2020b) A computational model of motion sickness considering visual and vestibular information. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC), pp 1758–1763. https://doi.org/10.1109/SMC42975.2020.9283350
Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269(5232):1880–1882. https://doi.org/10.1126/science.7569931
doi: 10.1126/science.7569931 pubmed: 7569931
Yunus I, Farhan Witjaksono F, Naz Başokur E, Jerrelind J, Drugge L (2022) Analysis of human perception models for motion sickness in autonomous driving. In: 13th international conference on applied human factors and ergonomics (AHFE 2022). https://doi.org/10.54941/ahfe1002473
Yunus I, Jerrelind J, Drugge L (2022) Evaluation of motion sickness prediction models for autonomous driving. In: Orlova A, Cole D (eds) Advances in dynamics of vehicles on roads and tracks II. Springer International Publishing, pp 875–887. https://doi.org/10.1007/978-3-031-07305-2_81
Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230. https://doi.org/10.1007/s00422-001-0290-1
doi: 10.1007/s00422-001-0290-1 pubmed: 12068787

Auteurs

Aaron R Allred (AR)

Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA. aaron.allred@colorado.edu.

Torin K Clark (TK)

Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA.

Classifications MeSH