Linking diet switching to reproductive performance across populations of two critically endangered mammalian herbivores.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
15 Mar 2024
15 Mar 2024
Historique:
received:
11
07
2023
accepted:
27
02
2024
medline:
18
3
2024
pubmed:
16
3
2024
entrez:
16
3
2024
Statut:
epublish
Résumé
Optimal foraging theory predicts that animals maximise energy intake by consuming the most valuable foods available. When resources are limited, they may include lower-quality fallback foods in their diets. As seasonal herbivore diet switching is understudied, we evaluate its extent and effects across three Kenyan reserves each for Critically Endangered eastern black rhino (Diceros bicornis michaeli) and Grevy's zebra (Equus grevyi), and its associations with habitat quality, microbiome variation, and reproductive performance. Black rhino diet breadth increases with vegetation productivity (NDVI), whereas zebra diet breadth peaks at intermediate NDVI. Black rhino diets associated with higher vegetation productivity have less acacia (Fabaceae: Vachellia and Senegalia spp.) and more grass suggesting that acacia are fallback foods, upending conventional assumptions. Larger dietary shifts are associated with longer calving intervals. Grevy's zebra diets in high rainfall areas are consistently grass-dominated, whereas in arid areas they primarily consume legumes during low vegetation productivity periods. Whilst microbiome composition between individuals is affected by the environment, and diet composition in black rhino, seasonal dietary shifts do not drive commensurate microbiome shifts. Documenting diet shifts across ecological gradients can increase the effectiveness of conservation by informing habitat suitability models and improving understanding of responses to resource limitation.
Identifiants
pubmed: 38491117
doi: 10.1038/s42003-024-05983-3
pii: 10.1038/s42003-024-05983-3
pmc: PMC10943211
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
333Subventions
Organisme : RCUK | Natural Environment Research Council (NERC)
ID : NE/L002469/1
Organisme : RCUK | Natural Environment Research Council (NERC)
ID : NE/L002469/1
Organisme : Royal Society
ID : UF110641
Informations de copyright
© 2024. The Author(s).
Références
J Anim Ecol. 2020 Jun;89(6):1482-1496
pubmed: 32163591
Adv Immunol. 2014;121:91-119
pubmed: 24388214
Science. 2008 Jun 20;320(5883):1647-51
pubmed: 18497261
Trends Ecol Evol. 2008 Mar;23(3):149-58
pubmed: 18289716
Ecol Lett. 2021 May;24(5):1052-1062
pubmed: 33745197
Sci Data. 2015 Dec 08;2:150066
pubmed: 26646728
Glob Chang Biol. 2018 Sep;24(9):4054-4068
pubmed: 29768697
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Integr Comp Biol. 2002 Apr;42(2):319-26
pubmed: 21708724
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8019-24
pubmed: 26034267
Conserv Biol. 2018 Feb;32(1):127-134
pubmed: 28639356
Am J Phys Anthropol. 2009 Dec;140(4):700-15
pubmed: 19890849
Oecologia. 1988 Apr;75(3):336-342
pubmed: 28312679
Integr Comp Biol. 2006 Dec;46(6):1191-205
pubmed: 21672817
Conserv Biol. 2010 Feb;24(1):349-52
pubmed: 19624526
PLoS One. 2019 Jan 16;14(1):e0209678
pubmed: 30650097
Appl Environ Microbiol. 2013 Sep;79(17):5112-20
pubmed: 23793624
PLoS One. 2013 Jul 17;8(7):e69771
pubmed: 23874997
Heliyon. 2020 Oct 16;6(10):e05272
pubmed: 33102871
Microbiome. 2019 Feb 15;7(1):27
pubmed: 30770764
Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19659-65
pubmed: 19903876
Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8
pubmed: 24293649
Integr Zool. 2021 May;16(3):300-312
pubmed: 33452844
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
Proc Biol Sci. 2006 Feb 22;273(1585):445-50
pubmed: 16615211
J Chem Ecol. 2006 Jun;32(6):1115-32
pubmed: 16770708
Ecol Evol. 2019 May 22;9(12):7047-7056
pubmed: 31380032
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Ecol Evol. 2021 Nov 02;11(22):16165-16176
pubmed: 34824819
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2204400119
pubmed: 35994662
Mol Ecol Resour. 2019 Jul;19(4):838-846
pubmed: 30703281
Am J Phys Anthropol. 2009 Dec;140(4):615-29
pubmed: 19890853
Am J Phys Anthropol. 2009 Dec;140(4):603-14
pubmed: 19890868
Mol Ecol. 2001 Aug;10(8):2031-41
pubmed: 11555246
Proc Biol Sci. 2022 Apr 13;289(1972):20220075
pubmed: 35414243
Proc Biol Sci. 2019 Oct 23;286(1913):20191916
pubmed: 31615360
Microbiome. 2015 Nov 10;3:51
pubmed: 26552373
Sci Rep. 2017 Jul 20;7(1):5950
pubmed: 28729625
mBio. 2018 Jul 31;9(4):
pubmed: 30065092
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8093-100
pubmed: 19365077
Ecology. 2011 Oct;92(10):1985-93
pubmed: 22073789
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23588-23593
pubmed: 31685619
Arch Anim Nutr. 2007 Apr;61(2):151-6
pubmed: 17451113
Mol Ecol. 2022 Nov;31(22):5660-5665
pubmed: 36263899
Mol Ecol. 2019 Jan;28(2):391-406
pubmed: 29858539
Conserv Biol. 2014 Apr;28(2):594-603
pubmed: 24641512
FEMS Microbiol Ecol. 2021 Jan 26;97(2):
pubmed: 33332530
Mol Ecol. 2022 Mar;31(6):1615-1626
pubmed: 35043486
Sci Rep. 2016 Aug 16;6:31519
pubmed: 27528013
Appl Environ Microbiol. 2005 Dec;71(12):8228-35
pubmed: 16332807
PLoS One. 2014 Mar 25;9(3):e92619
pubmed: 24667837
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2205315120
pubmed: 36623195
Sci Rep. 2015 Oct 07;5:14862
pubmed: 26445280
Bioinformatics. 2011 Feb 15;27(4):592-3
pubmed: 21169378
Oecologia. 2018 Aug;187(4):1095-1105
pubmed: 29955983
PLoS One. 2009 Dec 14;4(12):e8273
pubmed: 20011603
Front Microbiol. 2016 Jul 27;7:1169
pubmed: 27512391
Ecol Evol. 2019 May 09;9(11):6508-6523
pubmed: 31236240
Sci Adv. 2020 Oct 2;6(40):
pubmed: 33008899
Biol Rev Camb Philos Soc. 2017 Nov;92(4):1877-1909
pubmed: 27891813
J Anim Ecol. 2020 Dec;89(12):2825-2839
pubmed: 32961601
Proc Nutr Soc. 2011 Aug;70(3):389-96
pubmed: 21781364