Speech-Swallow Dissociation of Velopharyngeal Incompetence with Pseudobulbar Palsy: Evaluation by High-Resolution Manometry.
Bilateral corticobulbar tract
Blowing
Central pattern generator
High-resolution manometry
Velopharyngeal closure pressure
Videofluoroscopic examination
Journal
Dysphagia
ISSN: 1432-0460
Titre abrégé: Dysphagia
Pays: United States
ID NLM: 8610856
Informations de publication
Date de publication:
16 Mar 2024
16 Mar 2024
Historique:
received:
21
11
2022
accepted:
20
02
2024
medline:
16
3
2024
pubmed:
16
3
2024
entrez:
16
3
2024
Statut:
aheadofprint
Résumé
Patients with pseudobulbar palsy often present with velopharyngeal incompetence. Velopharyngeal incompetence is usually observed during expiratory activities such as speech and/or blowing during laryngoscopy. These patients typically exhibit good velopharyngeal closure during swallowing, which is dissociated from expiratory activities. We named this phenomenon "speech-swallow dissociation" (SSD). SSD on endoscopic findings can help in diagnosing the underlying disease causing dysphagia. This endoscopic finding is qualitative, and the quantitative characteristics of SSD are still unclear. Accordingly, the current study aimed to quantitatively evaluate SSD in patients with pseudobulbar palsy. We evaluated velopharyngeal pressure during swallowing and expiratory activity in 10 healthy subjects and 10 patients with pseudobulbar palsy using high-resolution manometry, and compared the results between the two groups. No significant differences in maximal velopharyngeal contraction pressure (V-Pmax) were observed during dry swallowing between the pseudobulbar palsy group and healthy subjects (190.5 mmHg vs. 173.6 mmHg; P = 0.583). V-Pmax during speech was significantly decreased in the pseudobulbar palsy group (85.4 mmHg vs. 34.5 mmHg; P < 0.001). The degree of dissociation of speech to swallowing in V-Pmax, when compared across groups, exhibited a larger difference in the pseudobulbar palsy group, at 52% versus 80% (P = 0.001). Velopharyngeal pressure during blowing was similar to that during speech. Velopharyngeal closure in patients with pseudobulbar palsy exhibited weaker pressure during speech and blowing compared with swallowing, quantitatively confirming the presence of SSD. Pseudobulbar palsy often presents with SSD, and this finding may be helpful in differentiating the etiology of dysphagia.
Identifiants
pubmed: 38492048
doi: 10.1007/s00455-024-10687-1
pii: 10.1007/s00455-024-10687-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Folkins JW. Velopharyngeal nomenclature: incompetence, inadequacy, insufficiency, and dysfunction. Cleft Palate J. 1988;25:413–6.
pubmed: 3060287
Glade RS, Deal R. Diagnosis and management of velopharyngeal dysfunction. Oral Maxillofac Surg Clin N Am. 2016;28:181–8. https://doi.org/10.1016/j.coms.2015.12.004 .
doi: 10.1016/j.coms.2015.12.004
Ertekin C, Aydogdu I, Tarlaci S, Turman AB, Kiylioglu N. Mechanisms of dysphagia in suprabulbar palsy with lacunar infarct. Stroke. 2000;31:1370–6. https://doi.org/10.1161/01.str.31.6.1370 .
doi: 10.1161/01.str.31.6.1370
pubmed: 10835459
Miyaji H, Umezaki T, Adachi K, Sawatsubashi M, Kiyohara H, Inoguchi T, To S, Komune S. Videofluoroscopic assessment of pharyngeal stage delay reflects pathophysiology after brain infarction. Laryngoscope. 2012;122:2793–9. https://doi.org/10.1002/lary.23588 .
doi: 10.1002/lary.23588
pubmed: 22965906
Yaguchi H, Sakuta K, Mukai T, Miyagawa S. Fiberoptic laryngoscopic neurological examination of amyotrophic lateral sclerosis patients with bulbar symptoms. J Neurol Sci. 2022;440: 120325. https://doi.org/10.1016/j.jns.2022.120325 .
doi: 10.1016/j.jns.2022.120325
pubmed: 35779417
Yorkston KM, Beukelman DR, Honsinger MJ. Perceived articulatory adequacy and velopharyngeal function in dysarthric speakers. Arch Phys Med Rehabil. 1989;70:313–7.
pubmed: 2930346
Kühnlein P, Gdynia HJ, Sperfeld AD, Lindner-Pfleghar B, Ludolph AC, Prosiegel M, Riecker A. Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat Clin Pract Neurol. 2008;4:366–74. https://doi.org/10.1038/ncpneuro0853 .
doi: 10.1038/ncpneuro0853
pubmed: 18560390
Thakore NJ, Pioro EP. Laughter, crying and sadness in ALS. J Neurol Neurosurg Psychiatry. 2017;88:825–31. https://doi.org/10.1136/jnnp-2017-315622 .
doi: 10.1136/jnnp-2017-315622
pubmed: 28572273
Kuehn DP, Moon JB. Levator veli palatini muscle activity in relation to intraoral air pressure variation. J Speech Hear Res. 1994;37:1260–70. https://doi.org/10.1044/jshr.3706.1260 .
doi: 10.1044/jshr.3706.1260
pubmed: 7877285
Nohara K, Kotani Y, Ojima M, Sasao Y, Tachimura T, Sakai T. Power spectra analysis of levator veli palatini muscle electromyogram during velopharyngeal closure for swallowing, speech, and blowing. Dysphagia. 2007;22:135–9. https://doi.org/10.1007/s00455-006-9066-z .
doi: 10.1007/s00455-006-9066-z
pubmed: 17333429
Kunieda K, Ohno T, Fujishima I, Hojo K, Morita T. Reliability and validity of a tool to measure the severity of dysphagia: the Food Intake LEVEL Scale. J Pain Symptom Manag. 2013;46:201–6. https://doi.org/10.1016/j.jpainsymman.2012.07.020 .
doi: 10.1016/j.jpainsymman.2012.07.020
Crary MA, Mann GD, Groher ME. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch Phys Med Rehabil. 2005;86:1516–20. https://doi.org/10.1016/j.apmr.2004.11.049 .
doi: 10.1016/j.apmr.2004.11.049
pubmed: 16084801
Perry JL. Anatomy and physiology of the velopharyngeal mechanism. Semin Speech Lang. 2011;32:83–92. https://doi.org/10.1055/s-0031-1277712 .
doi: 10.1055/s-0031-1277712
pubmed: 21948636
Shprintzen RJ, Lencione RM, McCall GN, Skolnick ML. A three dimensional cinefluoroscopic analysis of velopharyngeal closure during speech and nonspeech activities in normals. Cleft Palate J. 1974;11:412–28.
pubmed: 4530752
Bell-Berti F. An electromyographic study of velopharyngeal function in speech. J Speech Hear Res. 1976;19:225–40. https://doi.org/10.1044/jshr.1902.225 .
doi: 10.1044/jshr.1902.225
pubmed: 979198
Dua K, Shaker R, Ren J, Arndorfer R, Hofmann C. Mechanism and timing of nasopharyngeal closure during swallowing and belching. Am J Physiol. 1995;268:1037–42. https://doi.org/10.1152/ajpgi.1995.268.6.G1037 .
doi: 10.1152/ajpgi.1995.268.6.G1037
Sakamoto Y. Spatial relationship between the palatopharyngeus and the superior constrictor of the pharynx. Surg Radiol Anat. 2015;37:649–55. https://doi.org/10.1007/s00276-015-1444-5 .
doi: 10.1007/s00276-015-1444-5
pubmed: 25669143
Jean A, Car A, Roman C. Comparison of activity in pontine versus medullary neurones during swallowing. Exp Brain Res. 1975;22:211–20. https://doi.org/10.1007/bf00237690 .
doi: 10.1007/bf00237690
pubmed: 1126415
Amri M, Car A, Jean A. Medullary control of the pontine swallowing neurones in sheep. Exp Brain Res. 1984;55:105–10. https://doi.org/10.1007/bf00240503 .
doi: 10.1007/bf00240503
pubmed: 6745343
Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009;24:333–48. https://doi.org/10.1007/s00455-009-9211-6 .
doi: 10.1007/s00455-009-9211-6
pubmed: 19399555
Ertekin C. Voluntary versus spontaneous swallowing in man. Dysphagia. 2011;26:183–92. https://doi.org/10.1007/s00455-010-9319-8 .
doi: 10.1007/s00455-010-9319-8
pubmed: 21161279
Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14:77–86. https://doi.org/10.1002/ddrr.12 .
doi: 10.1002/ddrr.12
pubmed: 18646019
Umezaki T, Matsuse T, Shin T. Medullary swallowing-related neurons in the anesthetized cat. NeuroReport. 1998;9:1793–8. https://doi.org/10.1097/00001756-199806010-00022 .
doi: 10.1097/00001756-199806010-00022
pubmed: 9665602
Sugimoto T, Umezaki T, Takagi S, Narikawa K, Shin T. Crossing inputs of the superior laryngeal nerve afferents to medullary swallowing-related neurons in the cat. Neurosci Res. 1998;30:235–45. https://doi.org/10.1016/s0168-0102(98)00004-2 .
doi: 10.1016/s0168-0102(98)00004-2
pubmed: 9593334
Inagaki D, Miyaoka Y, Ashida I, Yamada Y. Influence of food properties and body position on swallowing-related muscle activity amplitude. J Oral Rehabil. 2009;36:176–83. https://doi.org/10.1111/j.1365-2842.2008.01927.x .
doi: 10.1111/j.1365-2842.2008.01927.x
pubmed: 19207444
Lamvik K, Jones R, Sauer S, Erfmann K, Huckabee ML. The capacity for volitional control of pharyngeal swallowing in healthy adults. Physiol Behav. 2015;152:257–63. https://doi.org/10.1016/j.physbeh.2015.09.026 .
doi: 10.1016/j.physbeh.2015.09.026
pubmed: 26432453
Ertekin C, Aydogdu I, Yüceyar N, Kiylioglu N, Tarlaci S, Uludag B. Pathophysiological mechanisms of oropharyngeal dysphagia in amyotrophic lateral sclerosis. Brain. 2000;123(Pt 1):125–40. https://doi.org/10.1093/brain/123.1.125 .
doi: 10.1093/brain/123.1.125
pubmed: 10611127
Kunieda K, Hayashi Y, Yamada M, Waza M, Yaguchi T, Fujishima I, Shimohata T. Serial evaluation of swallowing function in a long-term survivor of V180I genetic Creutzfeldt–Jakob disease. Prion. 2020;14:180–4. https://doi.org/10.1080/19336896.2020.1787090 .
doi: 10.1080/19336896.2020.1787090
pubmed: 32627665
pmcid: 7518740
Ertekin C, Aydogdu I, Yüceyar N, Tarlaci S, Kiylioglu N, Pehlivan M, Celebi G. Electrodiagnostic methods for neurogenic dysphagia. Electroencephalogr Clin Neurophysiol. 1998;109:331–40. https://doi.org/10.1016/s0924-980x(98)00027-7 .
doi: 10.1016/s0924-980x(98)00027-7
pubmed: 9751296
Simonyan K, Horwitz B. Laryngeal motor cortex and control of speech in humans. Neuroscientist. 2011;17:197–208. https://doi.org/10.1177/1073858410386727 .
doi: 10.1177/1073858410386727
pubmed: 21362688
pmcid: 3077440
Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26:235–58. https://doi.org/10.1016/s0149-7634(01)00068-9 .
doi: 10.1016/s0149-7634(01)00068-9
pubmed: 11856561
Loucks TM, Poletto CJ, Simonyan K, Reynolds CL, Ludlow CL. Human brain activation during phonation and exhalation: common volitional control for two upper airway functions. Neuroimage. 2007;36:131–43. https://doi.org/10.1016/j.neuroimage.2007.01.049 .
doi: 10.1016/j.neuroimage.2007.01.049
pubmed: 17428683
Simonyan K, Ostuni J, Ludlow CL, Horwitz B. Functional but not structural networks of the human laryngeal motor cortex show left hemispheric lateralization during syllable but not breathing production. J Neurosci. 2009;29:14912–23. https://doi.org/10.1523/jneurosci.4897-09.2009 .
doi: 10.1523/jneurosci.4897-09.2009
pubmed: 19940187
pmcid: 2805075
Mao CC, Coull BM, Golper LA, Rau MT. Anterior operculum syndrome. Neurology. 1989;39:1169–72. https://doi.org/10.1212/wnl.39.9.1169 .
doi: 10.1212/wnl.39.9.1169
pubmed: 2771066
Nowak DA, Griebl G, Dabitz R, Ochs G. Bilateral anterior opercular (Foix–Chavany–Marie) syndrome. J Clin Neurosci. 2010;17:1441–2. https://doi.org/10.1016/j.jocn.2010.02.021 .
doi: 10.1016/j.jocn.2010.02.021
pubmed: 20655752
Bakar M, Kirshner HS, Niaz F. The opercular-subopercular syndrome: four cases with review of the literature. Behav Neurol. 1998;11:97–103. https://doi.org/10.1155/1998/423645 .
doi: 10.1155/1998/423645
pubmed: 11568407
Hayashi R. Foix-Chavany-Marie syndrome: a clinical overview. Brain Nerve. 2019;71:273–80. https://doi.org/10.11477/mf.1416201255 .
doi: 10.11477/mf.1416201255
pubmed: 30827960
Weller M. Anterior opercular cortex lesions cause dissociated lower cranial nerve palsies and anarthria but no aphasia: Foix–Chavany–Marie syndrome and “automatic voluntary dissociation” revisited. J Neurol. 1993;240:199–208. https://doi.org/10.1007/bf00818705 .
doi: 10.1007/bf00818705
pubmed: 7684439
Tomik J, Sowula K, Dworak M, Stolcman K, Maraj M, Ceranowicz P. Esophageal Peristalsis Disorders in ALS Patients with Dysphagia. Brain Sci. 2020;10(11):820. https://doi.org/10.3390/brainsci10110820 .
doi: 10.3390/brainsci10110820
pubmed: 33171941
pmcid: 7694681
Warnecke T, Oelenberg S, Teismann I, Suntrup S, Hamacher C, Young P, Ringelstein EB, Dziewas R. Dysphagia in X-linked bulbospinal muscular atrophy (Kennedy disease). Neuromuscul Disord. 2009;19:704–8. https://doi.org/10.1016/j.nmd.2009.06.371 .
doi: 10.1016/j.nmd.2009.06.371
pubmed: 19616433
Banno H, Katsuno M, Suzuki K, Tanaka S, Suga N, Hashizume A, Mano T, Araki A, Watanabe H, Fujimoto Y, Yamamoto M, Sobue G. Swallowing markers in spinal and bulbar muscular atrophy. Ann Clin Transl Neurol. 2017;4:534–43. https://doi.org/10.1002/acn3.425 .
doi: 10.1002/acn3.425
pubmed: 28812043
pmcid: 5553229
Tanaka S, Hashizume A, Hijikata Y, Yamada S, Ito D, Nakayama A, Kurita K, Yogo H, Banno H, Suzuki K, Yamamoto M, Sobue G, Katsuno M. Nasometric Scores in spinal and bulbar muscular atrophy-effects of palatal lift prosthesis on dysarthria and dysphagia. J Neurol Sci. 2019;407: 116503. https://doi.org/10.1016/j.jns.2019.116503 .
doi: 10.1016/j.jns.2019.116503
pubmed: 31669728
Im S, Suntrup-Krueger S, Colbow S, Sauer S, Claus I, Meuth SG, Dziewas R, Warnecke T. Reliability and main findings of the flexible endoscopic evaluation of swallowing-Tensilon test in patients with myasthenia gravis and dysphagia. Eur J Neurol. 2018;25:1235–42. https://doi.org/10.1111/ene.13688 .
doi: 10.1111/ene.13688
pubmed: 29802670
Kunieda K, Hayashi Y, Yoshikura N, Ohno T, Kimura A, Fujishima I, Shimohata T. The usefulness of swallowing pressure assessment in the identification of mild pharyngeal weakness of myasthenia gravis: a case report. Case Rep Neurol. 2022;14:372–6. https://doi.org/10.1159/000526399 .
doi: 10.1159/000526399
pubmed: 36824579
pmcid: 9941770
Rieder AA, Conley SF, Rowe L. Pediatric myasthenia gravis and velopharyngeal incompetence. Int J Pediatr Otorhinolaryngol. 2004;68:747–52. https://doi.org/10.1016/j.ijporl.2004.01.006 .
doi: 10.1016/j.ijporl.2004.01.006
pubmed: 15126014
Mugii N, Hasegawa M, Matsushita T, Hamaguchi Y, Oohata S, Okita H, Yahata T, Someya F, Inoue K, Murono S, Fujimoto M, Takehara K. Oropharyngeal dysphagia in dermatomyositis: associations with clinical and laboratory features including autoantibodies. PLoS ONE. 2016;11: e0154746. https://doi.org/10.1371/journal.pone.0154746 .
doi: 10.1371/journal.pone.0154746
pubmed: 27167831
pmcid: 4864367
Moscona-Nissan A Sr, López-Hernández JC, Seidman-Sorsby A, Cruz-Zermeño M, Navalón-Calzada A. Pharyngeal–cervical–brachial variant of Guillain-Barré syndrome. Cureus. 2021;13: e18788. https://doi.org/10.7759/cureus.18788 .
doi: 10.7759/cureus.18788
pubmed: 34804654
pmcid: 8592309
Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84:275–94. https://doi.org/10.1016/0022-510x(88)90132-3 .
doi: 10.1016/0022-510x(88)90132-3
pubmed: 3379447
Nativ-Zeltzer N, Logemann JA, Zecker SG, Kahrilas PJ. Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography: a normative study of younger and older adults. Neurogastroenterol Motil. 2016;28:721–31. https://doi.org/10.1111/nmo.12769 .
doi: 10.1111/nmo.12769
pubmed: 26822009
pmcid: 4892368
Omari TI, Ciucci M, Gozdzikowska K, Hernández E, Hutcheson K, Jones C, Maclean J, Nativ-Zeltzer N, Plowman E, Rogus-Pulia N, Rommel N, O’Rourke A. High-resolution pharyngeal manometry and impedance: protocols and metrics-recommendations of a High-Resolution Pharyngeal Manometry International Working Group. Dysphagia. 2020;35:281–95. https://doi.org/10.1007/s00455-019-10023-y .
doi: 10.1007/s00455-019-10023-y
pubmed: 31168756
Cock C, Omari T. Systematic review of pharyngeal and esophageal manometry in healthy or dysphagic older persons (>60 years). Geriatrics (Basel). 2018;3(4):67. https://doi.org/10.3390/geriatrics3040067 .
doi: 10.3390/geriatrics3040067
pubmed: 31011102
Nishikubo K, Mise K, Ameya M, Hirose K, Kobayashi T, Hyodo M. Quantitative evaluation of age-related alteration of swallowing function: videofluoroscopic and manometric studies. Auris Nasus Larynx. 2015;42:134–8. https://doi.org/10.1016/j.anl.2014.07.002 .
doi: 10.1016/j.anl.2014.07.002
pubmed: 25199737
Zajac DJ. Velopharyngeal function in young and older adult speakers: evidence from aerodynamic studies. J Acoust Soc Am. 1997;102:1846–52. https://doi.org/10.1121/1.420091 .
doi: 10.1121/1.420091
pubmed: 9301062