Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling.
Alzheimer's disease
electroencephalography
frontotemporal dementia
hypoexcitation
metaconnectivity
neurodegeneration
structural connectivity
whole-brain modeling
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
19 Mar 2024
19 Mar 2024
Historique:
revised:
08
02
2024
received:
16
06
2023
accepted:
15
02
2024
medline:
19
3
2024
pubmed:
19
3
2024
entrez:
19
3
2024
Statut:
aheadofprint
Résumé
Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Alzheimer's Association
ID : SG-20-725707
Pays : United States
Informations de copyright
© 2024 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
Greene AS, Shen X, Noble S, et al. Brain - phenotype models fail for individuals who defy sample stereotypes. Nature. 2022;609(7925):109-118. doi:10.1038/s41586-022-05118-w
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413-446. doi:10.1016/S0140-6736(20)30367-6
Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. A roadmap to increase diversity in genomic studies. Nat Med. 2022;28(2):243-250. doi:10.1038/s41591-021-01672-4
Precision medicine needs an equity agenda. Nat Med. 2021;27(5):737-737. doi:10.1038/s41591-021-01373-y
Fittipaldi S, Legaz A, Maito M, et al. Heterogeneous factors influence social cognition across diverse settings in brain health and age-related diseases. Nature Mental Health. 2024;2(1):63-75. doi:10.1038/s44220-023-00164-3
Baez S, Alladi S, Ibanez A. Global South research is critical for understanding brain health, ageing and dementia. Clin Transl Med. 2023;13(11). doi:10.1002/ctm2.1486
Ibáñez A, Legaz A, Ruiz-Adame M. Addressing the gaps between socioeconomic disparities and biological models of dementia. Brain. 2023;146(9):3561-3564. doi:10.1093/brain/awad236
Prado P, Medel V, Gonzalez-Gomez R, et al. The BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds. Sci Data. 2023;10(1):889. doi:10.1038/s41597-023-02806-8
Parra MA, Baez S, Allegri R, et al. Dementia in Latin America. Neurology. 2018;90(5):222-231. doi:10.1212/WNL.0000000000004897
Abdel-Naseer M. Epidemiology of dementia in developing countries. J Neurol Sci. 2019;405:72-73. doi:10.1016/j.jns.2019.10.202
Ibanez A, Kringelbach ML, Deco G. A synergetic turn in cognitive neuroscience of brain diseases. Trends Cogn Sci. Forthcoming 2024. Published online January 2024. doi:10.1016/j.tics.2023.12.006
Parra MA, Orellana P, Leon T, et al. Biomarkers for dementia in Latin American countries: gaps and opportunities. Alzheimer's & Dementia. Forthcoming 2022. Published online September 13. doi:10.1002/alz.12757
Deco G, Kringelbach ML. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron. 2014;84(5):892-905. doi:10.1016/j.neuron.2014.08.034
Musa G, Slachevsky A, Muñoz-Neira C, et al. Alzheimer's disease or behavioral variant frontotemporal dementia? Review of key points toward an accurate clinical and neuropsychological diagnosis. J Alzheimer's Dis. 2020;73(3):833-848. doi:10.3233/JAD-190924
Migeot JA, Duran-Aniotz CA, Signorelli CM, Piguet O, Ibáñez A. A predictive coding framework of allostatic - interoceptive overload in frontotemporal dementia. Trends Neurosci. 2022;45(11):838-853. doi:10.1016/j.tins.2022.08.005
Wolters FJ, Tinga LM, Dhana K, et al. Life expectancy with and without dementia: a population-based study of dementia burden and preventive potential. Am J Epidemiol. 2019;188(2):372-381. doi:10.1093/aje/kwy234
Agrawal M, Biswas A. Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci. 2015;2. doi:10.3389/fmolb.2015.00054
Marek S, Tervo-Clemmens B, Calabro FJ, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603(7902):654-660. doi:10.1038/s41586-022-04492-9
Brown RKJ, Bohnen NI, Wong KK, Minoshima S, Frey KA. Brain PET in suspected dementia: patterns of altered FDG metabolism. RadioGraphics. 2014;34(3):684-701. doi:10.1148/rg.343135065
Horgan D, Nobili F, Teunissen C, et al. Biomarker testing: piercing the fog of Alzheimer's and related dementia. Biomed Hub. 2020;5(3):1-22. doi:10.1159/000511233
Ntymenou S, Tsantzali I, Kalamatianos T, et al. Blood biomarkers in frontotemporal dementia: review and meta-analysis. Brain Sci. 2021;11(2):244. doi:10.3390/brainsci11020244
Whelan R, Barbey FM, Cominetti MR, Gillan CM, Rosická AM. Developments in scalable strategies for detecting early markers of cognitive decline. Transl Psychiatry. 2022;12(1):473. doi:10.1038/s41398-022-02237-w
Vickers J. The cause of neuronal degeneration in Alzheimer's disease. Prog Neurobiol. 2000;60(2):139-165. doi:10.1016/S0301-0082(99)00023-4
Vecchio F, Babiloni C, Lizio R, et al. Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG markers for clinical applications: A review. Suppl Clin Neurophysiol. 2013:223-236. doi:10.1016/B978-0-7020-5307-8.00015-6
Henderson G, Ifeachor E, Hudson N, et al. Development and assessment of methods for detecting dementia using the human electroencephalogram. IEEE Trans Biomed Eng. 2006;53(8):1557-1568. doi:10.1109/TBME.2006.878067
Yang L, Wilke C, Brinkmann B, Worrell GA, He B. Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage. 2011;56(4):1908-1917. doi:10.1016/j.neuroimage.2011.03.043
Farina FR, Emek-Savaş DD, Rueda-Delgado L, et al. A comparison of resting state EEG and structural MRI for classifying Alzheimer's disease and mild cognitive impairment. Neuroimage. 2020;215:116795. doi:10.1016/j.neuroimage.2020.116795
Briels CT, Schoonhoven DN, Stam CJ, de Waal H, Scheltens P, Gouw AA. Reproducibility of EEG functional connectivity in Alzheimer's disease. Alzheimers Res Ther. 2020;12(1):68. doi:10.1186/s13195-020-00632-3
Luppi AI, Cabral J, Cofre R, Destexhe A, Deco G, Kringelbach ML. Dynamical models to evaluate structure - function relationships in network neuroscience. Nat Rev Neurosci. 2022;23(12):767-768. doi:10.1038/s41583-022-00646-w
Lewandowsky S, Oberauer K. Low replicability can support robust and efficient science. Nat Commun. 2020;11(1):358. doi:10.1038/s41467-019-14203-0
Perl YS, Pallavicini C, Ipiña IP, et al. Data augmentation based on dynamical systems for the classification of brain states. Chaos Solitons Fractals. 2020;139:110069. doi:10.1016/j.chaos.2020.110069
Ranasinghe KG, Verma P, Cai C, et al. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease. Elife. 2022;11. doi:10.7554/eLife.77850
Sanz Perl Y, Fittipaldi S, Gonzalez Campo C, et al. Model-based whole-brain perturbational landscape of neurodegenerative diseases. Elife. 2023;12. doi:10.7554/eLife.83970
Martínez-Cañada P, Perez-Valero E, Minguillon J, Pelayo F, López-Gordo M, Morillas C. Combining aperiodic 1/f slopes and brain simulation: an EEG/MEG proxy marker of excitation/inhibition imbalance in Alzheimer's Disease. bioRxiv. Published online 2023. doi:10.1101/2022.12.21.521529
Stefanovski L, Triebkorn P, Spiegler A, et al. Linking molecular pathways and large-scale computational modeling to assess candidate disease mechanisms and pharmacodynamics in Alzheimer's disease. Front Comput Neurosci. 2019;13. doi:10.3389/fncom.2019.00054
Cofré R, Herzog R, Mediano PAM, et al. Whole-brain models to explore altered states of consciousness from the bottom up. Brain Sci. 2020;10(9):626. doi:10.3390/brainsci10090626
Sanz Perl Y, Pallavicini C, Pérez Ipiña I, et al. Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. PLoS Comput Biol. 2021;17(7):e1009139. doi:10.1371/journal.pcbi.1009139
Deco G, Ponce-Alvarez A, Hagmann P, Romani GL, Mantini D, Corbetta M. How local excitation-inhibition ratio impacts the whole brain dynamics. J Neurosci. 2014;34(23):7886-7898. doi:10.1523/JNEUROSCI.5068-13.2014
Deco G, Cruzat J, Cabral J, et al. Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr Biol. 2018;28(19):3065-3074. doi:10.1016/j.cub.2018.07.083. e6.
Lynn CW, Bassett DS. The physics of brain network structure, function and control. Nat Rev Phys. 2019;1(5):318-332. doi:10.1038/s42254-019-0040-8
Perl YS, Bocaccio H, Pérez-Ipiña I, et al. Generative embeddings of brain collective dynamics using variational autoencoders. Phys Rev Lett. 2020;125(23):238101. doi:10.1103/PhysRevLett.125.238101
Coronel-Oliveros C, Castro S, Cofré R, Orio P. Structural features of the human connectome that facilitate the switching of brain dynamics via noradrenergic neuromodulation. Front Comput Neurosci. 2021;15. doi:10.3389/fncom.2021.687075
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186-198. doi:10.1038/nrn2575
Fraga González G, Van der Molen MJW, Žarić G, et al. Graph analysis of EEG resting state functional networks in dyslexic readers. Clin Neurophysiol. 2016;127(9):3165-3175. doi:10.1016/j.clinph.2016.06.023
Turkheimer FE, Rosas FE, Dipasquale O, et al. A complex systems perspective on neuroimaging studies of behavior and its disorders. The Neuroscientist. 2022;28(4):382-399. doi:10.1177/1073858421994784
Gatica M, Cofré R, Mediano PAM, et al. High-order interdependencies in the aging brain. Brain Connect. 2021;11(9):734-744. doi:10.1089/brain.2020.0982
Gatica M, E Rosas, F, A M Mediano P, et al. High-order functional redundancy in ageing explained via alterations in the connectome in a whole-brain model. PLoS Comput Biol. 2022;18(9):e1010431. doi:10.1371/journal.pcbi.1010431
Luppi AI, Mediano PAM, Rosas FE, et al. A synergistic core for human brain evolution and cognition. Nat Neurosci. 2022;25(6):771-782. doi:10.1038/s41593-022-01070-0
Herzog R, Rosas FE, Whelan R, et al. Genuine high-order interactions in brain networks and neurodegeneration. Neurobiol Dis. 2022;175:105918. doi:10.1016/j.nbd.2022.105918
Lombardo D, Cassé-Perrot C, Ranjeva JP, et al. Modular slowing of resting-state dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation. Neuroimage. 2020;222:117155. doi:10.1016/j.neuroimage.2020.117155
Arbabyazd LM, Lombardo D, Blin O, Didic M, Battaglia D, Jirsa V. Dynamic Functional Connectivity as a complex random walk: definitions and the dFCwalk toolbox. MethodsX. 2020;7:101168. doi:10.1016/j.mex.2020.101168
Battaglia D, Boudou T, Hansen ECA, et al. Dynamic Functional Connectivity between order and randomness and its evolution across the human adult lifespan. Neuroimage. 2020;222:117156. doi:10.1016/j.neuroimage.2020.117156
Arbabyazd L, Petkoski S, Breakspear M, Solodkin A, Battaglia D, Jirsa V. State switching and high-order spatiotemporal organization of dynamic Functional Connectivity are disrupted by Alzheimer's Disease. medRxiv. Forthcoming 2023. Published online 2023:2002-2023.
Daianu M, Mezher A, Mendez MF, Jahanshad N, Jimenez EE, Thompson PM. Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer's disease. Hum Brain Mapp. 2016;37(3):868-883. doi:10.1002/hbm.23069
de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ. Activity dependent degeneration explains hub vulnerability in Alzheimer's disease. PLoS Comput Biol. 2012;8(8):e1002582. doi:10.1371/journal.pcbi.1002582
Dai Z, Yan C, Li K, et al. Identifying and mapping connectivity patterns of brain network hubs in Alzheimer's disease. Cerebral Cortex. 2015;25(10):3723-3742. doi:10.1093/cercor/bhu246
Maestú F, de Haan W, Busche MA, DeFelipe J. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev. 2021;69:101372. doi:10.1016/j.arr.2021.101372
Lopatina OL, Malinovskaya NA, Komleva YK, et al. Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci. 2019;30(8):807-820. doi:10.1515/revneuro-2019-0014
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1-3):6-18. doi:10.1016/j.ejphar.2012.10.032
Hu YT, Tan ZL, Hirjak D, Northoff G. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol Psychiatry. 2023;28(8):3257-3266. doi:10.1038/s41380-023-02193-x
Ibanez A, Parra MA, Butler C. The Latin America and the Caribbean Consortium on Dementia (LAC-CD): from networking to research to implementation science. J Alzheimer's Dis. 2021;82(s1):S379-S394. doi:10.3233/JAD-201384
Ibanez A, Yokoyama JS, Possin KL, et al. The multi-partner consortium to expand dementia research in Latin America (ReDLat): driving multicentric research and implementation science. Front Neurol. 2021;12. doi:10.3389/fneur.2021.631722
Duran-Aniotz C, Sanhueza J, Grinberg LT, et al. The Latin American Brain Health Institute, a regional initiative to reduce the scale and impact of dementia. Alzheimer's & Dementia. 2022;18(9):1696-1698. doi:10.1002/alz.12710
Parra-Rodriguez MA, Prado P, Moguilner S, et al. The EuroLaD-EEG consortium: towards a global EEG platform for dementia, for seeking to reduce the regional impact of dementia. Alzheimer's & Dementia. 2022;18(S6). doi:10.1002/alz.059944
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia. 2011;7(3):263-269. doi:10.1016/j.jalz.2011.03.005
Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734-746. doi:10.1016/S1474-4422(07)70178-3
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456-2477. doi:10.1093/brain/awr179
Melloni M, Billeke P, Baez S, et al. Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. Brain. 2016;139(11):3022-3040. doi:10.1093/brain/aww231
Baez S, Couto B, Torralva T, et al. Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurol. 2014;71(9):1172. doi:10.1001/jamaneurol.2014.347
Moguilner S, García AM, Perl YS, et al. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: a multicenter study. Neuroimage. 2021;225:117522. doi:10.1016/j.neuroimage.2020.117522
Salamone PC, Legaz A, Sedeño L, et al. Interoception primes emotional processing: multimodal evidence from neurodegeneration. J Neurosci. 2021;41(19):4276-4292. doi:10.1523/JNEUROSCI.2578-20.2021
Ibañez A, Fittipaldi S, Trujillo C, et al. Predicting and characterizing neurodegenerative subtypes with multimodal neurocognitive signatures of social and cognitive processes. J Alzheimer's Dis. 2021;83(1):227-248. doi:10.3233/JAD-210163
Kline A, Luo Y. PsmPy: A Package for Retrospective Cohort Matching in Python. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2022:1354-1357. doi:10.1109/EMBC48229.2022.9871333
Statistical Parametric Mapping. Elsevier; 2007. doi:10.1016/B978-0-12-372560-8.X5000-1
Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TEJ. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med. 2012;68(6):1846-1855. doi:10.1002/mrm.24204
Prado P, Birba A, Cruzat J, et al. Dementia ConnEEGtome: towards multicentric harmonization of EEG connectivity in neurodegeneration. International J Psychophysiol. 2022;172:24-38. doi:10.1016/j.ijpsycho.2021.12.008
Courellis HS, Iversen JR, Poizner H, Cauwenberghs G. EEG channel interpolation using ellipsoid geodesic length. 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE; 2016:540-543. doi:10.1109/BioCAS.2016.7833851
Kim D, Kim SK. Comparing patterns of component loadings: principal Component Analysis (PCA) versus Independent Component Analysis (ICA) in analyzing multivariate non-normal data. Behav Res Methods. 2012;44(4):1239-1243. doi:10.3758/s13428-012-0193-1
Dirlich G, Vogl L, Plaschke M, Strian F. Cardiac field effects on the EEG. Electroencephalogr Clin Neurophysiol. 1997;102(4):307-315. doi:10.1016/S0013-4694(96)96506-2
Pollatos O, Schandry R. Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology. 2004;41(3):476-482. doi:10.1111/1469-8986.2004.00170.x
Schandry R, Montoya P. Event-related brain potentials and the processing of cardiac activity. Biol Psychol. 1996;42(1-2):75-85. doi:10.1016/0301-0511(95)05147-3
Birba A, Fittipaldi S, Cediel Escobar JC, et al. Multimodal neurocognitive markers of naturalistic discourse typify diverse neurodegenerative diseases. Cerebral Cortex. 2022;32(16):3377-3391. doi:10.1093/cercor/bhab421
Grech R, Cassar T, Muscat J, et al. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008;5(1):25. doi:10.1186/1743-0003-5-25
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273-289. doi:10.1006/nimg.2001.0978
Martinez AM, Kak AC. PCA versus LDA. IEEE Trans Pattern Anal Mach Intell. 2001;23(2):228-233. doi:10.1109/34.908974
David O, Friston KJ. A neural mass model for MEG/EEG:. Neuroimage. 2003;20(3):1743-1755. doi:10.1016/j.neuroimage.2003.07.015
Otero M, Lea-Carnall C, Prado P, Escobar MJ. El-Deredy W. Modelling neural entrainment and its persistence: influence of frequency of stimulation and phase at the stimulus offset. Biomed Phys Eng Express. Forthcoming 2022. Published online March 23, 2022. doi:10.1088/2057-1976/ac605a
Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern. 1995;73(4):357-366. doi:10.1007/BF00199471
McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN. Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol. 1991;305(3):370-392. doi:10.1002/cne.903050303
Gilbert CD, Hirsch JA, Wiesel TN. Lateral interactions in visual cortex. Cold Spring Harb Symp Quant Biol. 1990;55(0):663-677. doi:10.1101/SQB.1990.055.01.063
Abeysuriya RG, Hadida J, Sotiropoulos SN, et al. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks. PLoS Comput Biol. 2018;14(2):e1006007. doi:10.1371/journal.pcbi.1006007
Gütig R, Aharonov R, Rotter S, Sompolinsky H. Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J Neurosci. 2003;23(9):3697-3714. doi:10.1523/JNEUROSCI.23-09-03697.2003
Ito T, Brincat SL, Siegel M, et al. Task-evoked activity quenches neural correlations and variability across cortical areas. PLoS Comput Biol. 2020;16(8):e1007983. doi:10.1371/journal.pcbi.1007983
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600-612. doi:10.1109/TIP.2003.819861
Ipiña IP, Kehoe PD, Kringelbach M, et al. Modeling regional changes in dynamic stability during sleep and wakefulness. Neuroimage. 2020;215:116833.
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059-1069. doi:10.1016/j.neuroimage.2009.10.003
Deco G, Cruzat J, Cabral J, et al. Awakening: predicting external stimulation to force transitions between different brain states. PNAS. 2019;116(36):18088-18097.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R. Stat. Soc Ser B (Methodol). 1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.tb02031.x
Hofmann MA. Searching for effects in big data: why p-values are not advised and what to use instead. In: 2015 Winter Simulation Conference (WSC). IEEE; 2015:725-736. doi:10.1109/WSC.2015.7408210
Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8(7):e68910. doi:10.1371/journal.pone.0068910
Luppi AI, Mediano PAM, Rosas FE, et al. Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness. Commun Biol. 2022;5(1):384. doi:10.1038/s42003-022-03330-y
Gili T, Cercignani M, Serra L, et al. Regional brain atrophy and functional disconnection across Alzheimer's disease evolution. J Neurol Neurosurg Psychiatry. 2011;82(1):58-66. doi:10.1136/jnnp.2009.199935
Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer's Disease and aging. Ageing Res Rev. 2016;30:25-48. doi:10.1016/j.arr.2016.01.002
Griffa A, Van den Heuvel MP. Rich-club neurocircuitry: function, evolution, and vulnerability. Dialogues Clin Neurosci. 2018;20(2):121-132. doi:10.31887/DCNS.2018.20.2/agriffa
Jeong J. EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol. 2004;115(7):1490-1505. doi:10.1016/j.clinph.2004.01.001
Bozzali M, Parker GJM, Serra L, et al. Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer's disease. Neuroimage. 2011;54(3):2045-2051. doi:10.1016/j.neuroimage.2010.08.069
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the pathophysiology of Alzheimer's disease and potential therapeutic targets: a current perspective. J Alzheimer's Dis. 2022;3:1-24. Published online December 3, 2022:1-24. doi:10.3233/JAD-220666
Ibañez A, Manes F. Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology. 2012;78(17):1354-1362. doi:10.1212/WNL.0b013e3182518375
Boeve BF, Boxer AL, Kumfor F, Pijnenburg Y, Rohrer JD. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022;21(3):258-272. doi:10.1016/S1474-4422(21)00341-0
Besthorn C, Zerfass R, Geiger-Kabisch C, et al. Discrimination of Alzheimer's disease and normal aging by EEG data. Electroencephalogr Clin Neurophysiol. 1997;103(2):241-248. doi:10.1016/S0013-4694(97)96562-7
Signorino M, Pucci E, Belardinelli N, Nolfe G, Angeleri F. EEG spectral analysis in vascular and Alzheimer dementia. Electroencephalogr Clin Neurophysiol. 1995;94(5):313-325. doi:10.1016/0013-4694(94)00290-2
Mediano PAM, Rosas FE, Luppi AI, et al. Greater than the parts: a review of the information decomposition approach to causal emergence. Philos Trans R Soc A. 2022;380(2227). doi:10.1098/rsta.2021.0246
Carlos CO, Carsten G, Vicente M, Rodrigo C, Patricio O. Whole-brain modeling explains the context-dependent effects of cholinergic neuromodulation. bioRxiv. 2022. Published online 2022.
van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011;31(44):15775-15786. doi:10.1523/JNEUROSCI.3539-11.2011
Deco G, Van Hartevelt TJ, Fernandes HM, Stevner A, Kringelbach ML. The most relevant human brain regions for functional connectivity: evidence for a dynamical workspace of binding nodes from whole-brain computational modelling. Neuroimage. 2017;146:197-210. doi:10.1016/j.neuroimage.2016.10.047
Wolff A, Berberian N, Golesorkhi M, Gomez-Pilar J, Zilio F, Northoff G. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn Sci. 2022;26(2):159-173. doi:10.1016/j.tics.2021.11.007
Gaubert S, Raimondo F, Houot M, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease. Brain. 2019;142(7):2096-2112. doi:10.1093/brain/awz150
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res. 2017;95(4):943-972. doi:10.1002/jnr.23777
Wang R, Liu M, Cheng X, Wu Y, Hildebrandt A, Zhou C. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc Natl Acad Sci. 2021;118(23). doi:10.1073/pnas.2022288118
La Joie R, Perrotin A, Barré L, et al. Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer's disease dementia. J Neurosci. 2012;32(46):16265-16273.
Klupp E, Grimmer T, Tahmasian M, et al. Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions. Journal of Nuclear Medicine. 2015;56(3):399-404. doi:10.2967/jnumed.114.149302
Garcés P, Vicente R, Wibral M, et al. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Front Aging Neurosci. 2013;5:100.
Oluigbo CO, Salma A, Rezai AR. Deep brain stimulation for neurological disorders. IEEE Rev Biomed Eng. 2012;5:88-99.
Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148-160.
Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A. Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study. Neuroimage. 2016;140:174-187. doi:10.1016/j.neuroimage.2016.02.015
Koch G, Casula EP, Bonnì S, et al. Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial. Brain. 2022;145(11):3776-3786. doi:10.1093/brain/awac285
Garcia-Cordero I, Migeot J, Fittipaldi S, et al. Metacognition of emotion recognition across neurodegenerative diseases. Cortex. 2021;137:93-107. doi:10.1016/j.cortex.2020.12.023
Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev. 2018;2018(6). doi:10.1002/14651858.CD001190.pub3
Vann Jones SA, O'Kelly A. Psychedelics as a treatment for Alzheimer's disease dementia. Front Synaptic Neurosci. 2020;12. doi:10.3389/fnsyn.2020.00034
Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and other psychoplastogens for treating mental illness. Front Psychiatry. 2021;12. doi:10.3389/fpsyt.2021.727117
Deco G, Cabral J, Woolrich MW, Stevner ABA, van Hartevelt TJ, Kringelbach ML. Single or multiple frequency generators in on-going brain activity: a mechanistic whole-brain model of empirical MEG data. Neuroimage. 2017;152:538-550. doi:10.1016/j.neuroimage.2017.03.023
Fittipaldi S, Migeot J, Ibanez A. Socioeconomic disparities harm social cognition. Trends Cogn Sci. Forthcoming 2024. Published online January 2024. doi:10.1016/j.tics.2023.12.005
Domhof JWM, Eickhoff SB, Popovych OV. Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage. 2022;257:119321. doi:10.1016/j.neuroimage.2022.119321
Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer's disease. Mol Biol Rep. 2021;48(7):5629-5645.
Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging models can address heterogeneity in dementia. Brain. 2021;144(10):2946-2953. doi:10.1093/brain/awab165
Coronel-Oliveros C, Gießing C, Medel V, Cofré R, Orio P. Whole-brain modeling explains the context-dependent effects of cholinergic neuromodulation. Neuroimage. 2023;265:119782. doi:10.1016/j.neuroimage.2022.119782