SCGB1D2 inhibits growth of Borrelia burgdorferi and affects susceptibility to Lyme disease.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 Mar 2024
19 Mar 2024
Historique:
received:
13
12
2022
accepted:
06
02
2024
medline:
20
3
2024
pubmed:
20
3
2024
entrez:
20
3
2024
Statut:
epublish
Résumé
Lyme disease is a tick-borne disease caused by bacteria of the genus Borrelia. The host factors that modulate susceptibility for Lyme disease have remained mostly unknown. Using epidemiological and genetic data from FinnGen and Estonian Biobank, we identify two previously known variants and an unknown common missense variant at the gene encoding for Secretoglobin family 1D member 2 (SCGB1D2) protein that increases the susceptibility for Lyme disease. Using live Borrelia burgdorferi (Bb) we find that recombinant reference SCGB1D2 protein inhibits the growth of Bb in vitro more efficiently than the recombinant protein with SCGB1D2 P53L deleterious missense variant. Finally, using an in vivo murine infection model we show that recombinant SCGB1D2 prevents infection by Borrelia in vivo. Together, these data suggest that SCGB1D2 is a host defense factor present in the skin, sweat, and other secretions which protects against Bb infection and opens an exciting therapeutic avenue for Lyme disease.
Identifiants
pubmed: 38503741
doi: 10.1038/s41467-024-45983-9
pii: 10.1038/s41467-024-45983-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2041Subventions
Organisme : Academy of Finland (Suomen Akatemia)
ID : #340538
Informations de copyright
© 2024. The Author(s).
Références
Steere, A. C., Schoen, R. T. & Taylor, E. The clinical evolution of Lyme arthritis. Ann. Intern. Med. 107, 725–731 (1987).
doi: 10.7326/0003-4819-107-5-725
pubmed: 3662285
Wormser, G. P. et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 43, 1089–1134 (2006).
doi: 10.1086/508667
pubmed: 17029130
Rizzoli, A. et al. Lyme borreliosis in Europe. Euro Surveill. 16 (2011).
Sajanti, E. et al. Lyme borreliosis in Finland, 1995-2014. Emerg. Infect. Dis. 23, 1282–1288 (2017).
doi: 10.3201/eid2308.161273
pubmed: 28726624
pmcid: 5547811
Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090 (2015).
doi: 10.1038/ng.3379
pubmed: 26258845
pmcid: 4552599
Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).
doi: 10.1038/s41467-017-00257-5
pubmed: 28928442
pmcid: 5605711
Hammer, C. et al. Amino acid variation in HLA class II proteins is a major determinant of humoral response to common viruses. Am. J. Hum. Genet. 97, 738–743 (2015).
doi: 10.1016/j.ajhg.2015.09.008
pubmed: 26456283
pmcid: 4667104
Narwaney, K. J. et al. Association of HLA class II genes with clinical hyporesponsiveness to trivalent inactivated influenza vaccine in children. Vaccine 31, 1123–1128 (2013).
doi: 10.1016/j.vaccine.2012.12.026
pubmed: 23261040
International Multiple Sclerosis Genetics, C. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).
doi: 10.1038/nature10251
Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).
doi: 10.1086/318799
pubmed: 11179016
pmcid: 1274481
Strle, K., Shin, J. J., Glickstein, L. J. & Steere, A. C. Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum. 64, 1497–1507 (2012).
doi: 10.1002/art.34383
pubmed: 22246581
pmcid: 3338893
Mikacenic, C., Reiner, A. P., Holden, T. D., Nickerson, D. A. & Wurfel, M. M. Variation in the TLR10/TLR1/TLR6 locus is the major genetic determinant of interindividual difference in TLR1/2-mediated responses. Genes Immun. 14, 52–57 (2013).
doi: 10.1038/gene.2012.53
pubmed: 23151486
Donertas, H. M., Fabian, D. K., Valenzuela, M. F., Partridge, L. & Thornton, J. M. Common genetic associations between age-related diseases. Nat. Aging 1, 400–412 (2021).
doi: 10.1038/s43587-021-00051-5
pubmed: 33959723
pmcid: 7610725
Chen, M. H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213 e1114 (2020).
doi: 10.1016/j.cell.2020.06.045
pubmed: 32888493
pmcid: 7480402
Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).
doi: 10.1038/ng.3985
pubmed: 29083406
pmcid: 5989923
Masin, P. S. et al. Genetic polymorphisms of toll-like receptors in leprosy patients from southern Brazil. Front. Genet. 13, 952219 (2022).
doi: 10.3389/fgene.2022.952219
pubmed: 36313452
pmcid: 9596761
Qi, H. et al. Toll-like receptor 1(TLR1) Gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children. Tuberculosis) 95, 197–203 (2015).
doi: 10.1016/j.tube.2014.12.001
pubmed: 25544311
Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
doi: 10.1093/nar/gkg509
pubmed: 12824425
pmcid: 168916
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
doi: 10.1038/nmeth0410-248
pubmed: 20354512
pmcid: 2855889
Woolfson, D. N. & Williams, D. H. The influence of proline residues on alpha-helical structure. FEBS Lett. 277, 185–188 (1990).
doi: 10.1016/0014-5793(90)80839-B
pubmed: 2269352
Kaiser, L. et al. The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J. Biol. Chem. 278, 37730–37735 (2003).
doi: 10.1074/jbc.M304740200
pubmed: 12851385
Jackson, B. C. et al. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum. Genomics 5, 691–702 (2011).
doi: 10.1186/1479-7364-5-6-691
pubmed: 22155607
pmcid: 3251818
Lu, X. et al. The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis. Respir. Res. 12, 28 (2011).
doi: 10.1186/1465-9921-12-28
pubmed: 21385388
pmcid: 3063214
Consortium, G. T. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
doi: 10.1038/ng.2653
He, H. et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immunol. 145, 1615–1628 (2020).
doi: 10.1016/j.jaci.2020.01.042
pubmed: 32035984
Na, C. H. et al. Integrated transcriptomic and proteomic analysis of human eccrine sweat glands identifies missing and novel proteins. Mol. Cell Proteomics 18, 1382–1395 (2019).
doi: 10.1074/mcp.RA118.001101
pubmed: 30979791
pmcid: 6601213
Csosz, E., Emri, G., Kallo, G., Tsaprailis, G. & Tozser, J. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J. Eur. Acad. Dermatol. Venereol. 29, 2024–2031 (2015).
doi: 10.1111/jdv.13221
pubmed: 26307449
pmcid: 4583350
Chan, K., Alter, L., Barthold, S. W. & Parveen, N. Disruption of bbe02 by insertion of a luciferase gene increases transformation efficiency of Borrelia burgdorferi and allows live imaging in lyme disease susceptible C3H mice. PLoS ONE 10, e0129532 (2015).
doi: 10.1371/journal.pone.0129532
pubmed: 26069970
pmcid: 4466376
Hyde, J. A. et al. Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol. Microbiol. 82, 99–113 (2011).
doi: 10.1111/j.1365-2958.2011.07801.x
pubmed: 21854463
pmcid: 3183165
Mootz, M., Jakwerth, C. A., Schmidt-Weber, C. B. & Zissler, U. M. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 77, 767–777 (2022).
doi: 10.1111/all.15033
pubmed: 34343347
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
doi: 10.1038/s41586-022-05473-8
pubmed: 36653562
pmcid: 9849126
Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).
doi: 10.1038/ng.3679
pubmed: 27694958
pmcid: 5096458
Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).
doi: 10.1016/j.ajhg.2021.08.005
pubmed: 34478634
pmcid: 8551421
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).
doi: 10.1038/s41588-021-00870-7
pubmed: 34017140
Wang, G. S. A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
doi: 10.1093/bioinformatics/btq340
pubmed: 20616382
pmcid: 2922887