SCGB1D2 inhibits growth of Borrelia burgdorferi and affects susceptibility to Lyme disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 Mar 2024
Historique:
received: 13 12 2022
accepted: 06 02 2024
medline: 20 3 2024
pubmed: 20 3 2024
entrez: 20 3 2024
Statut: epublish

Résumé

Lyme disease is a tick-borne disease caused by bacteria of the genus Borrelia. The host factors that modulate susceptibility for Lyme disease have remained mostly unknown. Using epidemiological and genetic data from FinnGen and Estonian Biobank, we identify two previously known variants and an unknown common missense variant at the gene encoding for Secretoglobin family 1D member 2 (SCGB1D2) protein that increases the susceptibility for Lyme disease. Using live Borrelia burgdorferi (Bb) we find that recombinant reference SCGB1D2 protein inhibits the growth of Bb in vitro more efficiently than the recombinant protein with SCGB1D2 P53L deleterious missense variant. Finally, using an in vivo murine infection model we show that recombinant SCGB1D2 prevents infection by Borrelia in vivo. Together, these data suggest that SCGB1D2 is a host defense factor present in the skin, sweat, and other secretions which protects against Bb infection and opens an exciting therapeutic avenue for Lyme disease.

Identifiants

pubmed: 38503741
doi: 10.1038/s41467-024-45983-9
pii: 10.1038/s41467-024-45983-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2041

Subventions

Organisme : Academy of Finland (Suomen Akatemia)
ID : #340538

Informations de copyright

© 2024. The Author(s).

Références

Steere, A. C., Schoen, R. T. & Taylor, E. The clinical evolution of Lyme arthritis. Ann. Intern. Med. 107, 725–731 (1987).
doi: 10.7326/0003-4819-107-5-725 pubmed: 3662285
Wormser, G. P. et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 43, 1089–1134 (2006).
doi: 10.1086/508667 pubmed: 17029130
Rizzoli, A. et al. Lyme borreliosis in Europe. Euro Surveill. 16 (2011).
Sajanti, E. et al. Lyme borreliosis in Finland, 1995-2014. Emerg. Infect. Dis. 23, 1282–1288 (2017).
doi: 10.3201/eid2308.161273 pubmed: 28726624 pmcid: 5547811
Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090 (2015).
doi: 10.1038/ng.3379 pubmed: 26258845 pmcid: 4552599
Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).
doi: 10.1038/s41467-017-00257-5 pubmed: 28928442 pmcid: 5605711
Hammer, C. et al. Amino acid variation in HLA class II proteins is a major determinant of humoral response to common viruses. Am. J. Hum. Genet. 97, 738–743 (2015).
doi: 10.1016/j.ajhg.2015.09.008 pubmed: 26456283 pmcid: 4667104
Narwaney, K. J. et al. Association of HLA class II genes with clinical hyporesponsiveness to trivalent inactivated influenza vaccine in children. Vaccine 31, 1123–1128 (2013).
doi: 10.1016/j.vaccine.2012.12.026 pubmed: 23261040
International Multiple Sclerosis Genetics, C. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).
doi: 10.1038/nature10251
Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).
doi: 10.1086/318799 pubmed: 11179016 pmcid: 1274481
Strle, K., Shin, J. J., Glickstein, L. J. & Steere, A. C. Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum. 64, 1497–1507 (2012).
doi: 10.1002/art.34383 pubmed: 22246581 pmcid: 3338893
Mikacenic, C., Reiner, A. P., Holden, T. D., Nickerson, D. A. & Wurfel, M. M. Variation in the TLR10/TLR1/TLR6 locus is the major genetic determinant of interindividual difference in TLR1/2-mediated responses. Genes Immun. 14, 52–57 (2013).
doi: 10.1038/gene.2012.53 pubmed: 23151486
Donertas, H. M., Fabian, D. K., Valenzuela, M. F., Partridge, L. & Thornton, J. M. Common genetic associations between age-related diseases. Nat. Aging 1, 400–412 (2021).
doi: 10.1038/s43587-021-00051-5 pubmed: 33959723 pmcid: 7610725
Chen, M. H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213 e1114 (2020).
doi: 10.1016/j.cell.2020.06.045 pubmed: 32888493 pmcid: 7480402
Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).
doi: 10.1038/ng.3985 pubmed: 29083406 pmcid: 5989923
Masin, P. S. et al. Genetic polymorphisms of toll-like receptors in leprosy patients from southern Brazil. Front. Genet. 13, 952219 (2022).
doi: 10.3389/fgene.2022.952219 pubmed: 36313452 pmcid: 9596761
Qi, H. et al. Toll-like receptor 1(TLR1) Gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children. Tuberculosis) 95, 197–203 (2015).
doi: 10.1016/j.tube.2014.12.001 pubmed: 25544311
Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
doi: 10.1093/nar/gkg509 pubmed: 12824425 pmcid: 168916
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
doi: 10.1038/nmeth0410-248 pubmed: 20354512 pmcid: 2855889
Woolfson, D. N. & Williams, D. H. The influence of proline residues on alpha-helical structure. FEBS Lett. 277, 185–188 (1990).
doi: 10.1016/0014-5793(90)80839-B pubmed: 2269352
Kaiser, L. et al. The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J. Biol. Chem. 278, 37730–37735 (2003).
doi: 10.1074/jbc.M304740200 pubmed: 12851385
Jackson, B. C. et al. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum. Genomics 5, 691–702 (2011).
doi: 10.1186/1479-7364-5-6-691 pubmed: 22155607 pmcid: 3251818
Lu, X. et al. The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis. Respir. Res. 12, 28 (2011).
doi: 10.1186/1465-9921-12-28 pubmed: 21385388 pmcid: 3063214
Consortium, G. T. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
doi: 10.1038/ng.2653
He, H. et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immunol. 145, 1615–1628 (2020).
doi: 10.1016/j.jaci.2020.01.042 pubmed: 32035984
Na, C. H. et al. Integrated transcriptomic and proteomic analysis of human eccrine sweat glands identifies missing and novel proteins. Mol. Cell Proteomics 18, 1382–1395 (2019).
doi: 10.1074/mcp.RA118.001101 pubmed: 30979791 pmcid: 6601213
Csosz, E., Emri, G., Kallo, G., Tsaprailis, G. & Tozser, J. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J. Eur. Acad. Dermatol. Venereol. 29, 2024–2031 (2015).
doi: 10.1111/jdv.13221 pubmed: 26307449 pmcid: 4583350
Chan, K., Alter, L., Barthold, S. W. & Parveen, N. Disruption of bbe02 by insertion of a luciferase gene increases transformation efficiency of Borrelia burgdorferi and allows live imaging in lyme disease susceptible C3H mice. PLoS ONE 10, e0129532 (2015).
doi: 10.1371/journal.pone.0129532 pubmed: 26069970 pmcid: 4466376
Hyde, J. A. et al. Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol. Microbiol. 82, 99–113 (2011).
doi: 10.1111/j.1365-2958.2011.07801.x pubmed: 21854463 pmcid: 3183165
Mootz, M., Jakwerth, C. A., Schmidt-Weber, C. B. & Zissler, U. M. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 77, 767–777 (2022).
doi: 10.1111/all.15033 pubmed: 34343347
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
doi: 10.1038/s41586-022-05473-8 pubmed: 36653562 pmcid: 9849126
Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).
doi: 10.1038/ng.3679 pubmed: 27694958 pmcid: 5096458
Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).
doi: 10.1016/j.ajhg.2021.08.005 pubmed: 34478634 pmcid: 8551421
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).
doi: 10.1038/s41588-021-00870-7 pubmed: 34017140
Wang, G. S. A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
doi: 10.1093/bioinformatics/btq340 pubmed: 20616382 pmcid: 2922887

Auteurs

Satu Strausz (S)

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
Department of Plastic Surgery, Cleft Palate and Craniofacial Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

Erik Abner (E)

Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.

Grace Blacker (G)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Sarah Galloway (S)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Paige Hansen (P)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Qingying Feng (Q)

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Brandon T Lee (BT)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Samuel E Jones (SE)

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.

Hele Haapaniemi (H)

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.

Sten Raak (S)

Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.

George Ronald Nahass (GR)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.

Erin Sanders (E)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Pilleriin Soodla (P)

Department of Infectious Diseases, Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia.

Urmo Võsa (U)

Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.

Tõnu Esko (T)

Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.

Nasa Sinnott-Armstrong (N)

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.

Irving L Weissman (IL)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Mark Daly (M)

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.

Tuomas Aivelo (T)

Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.

Michal Caspi Tal (MC)

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA. mtal@mit.edu.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. mtal@mit.edu.

Hanna M Ollila (HM)

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. hanna.m.ollila@helsinki.fi.
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, MA, USA. hanna.m.ollila@helsinki.fi.
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. hanna.m.ollila@helsinki.fi.
Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. hanna.m.ollila@helsinki.fi.

Classifications MeSH