Exemestane plus everolimus and palbociclib in metastatic breast cancer: clinical response and genomic/transcriptomic determinants of resistance in a phase I/II trial.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 Mar 2024
Historique:
received: 09 10 2022
accepted: 02 02 2024
medline: 20 3 2024
pubmed: 20 3 2024
entrez: 20 3 2024
Statut: epublish

Résumé

The landscape of cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) resistance is still being elucidated and the optimal subsequent therapy to overcome resistance remains uncertain. Here we present the final results of a phase Ib/IIa, open-label trial (NCT02871791) of exemestane plus everolimus and palbociclib for CDK4/6i-resistant metastatic breast cancer. The primary objective of phase Ib was to evaluate safety and tolerability and determine the maximum tolerated dose/recommended phase II dose (100 mg palbociclib, 5 mg everolimus, 25 mg exemestane). The primary objective of phase IIa was to determine the clinical benefit rate (18.8%, n = 6/32), which did not meet the predefined endpoint (65%). Secondary objectives included pharmacokinetic profiling (phase Ib), objective response rate, disease control rate, duration of response, and progression free survival (phase IIa), and correlative multi-omics analysis to investigate biomarkers of resistance to CDK4/6i. All participants were female. Multi-omics data from the phase IIa patients (n = 24 tumor/17 blood biopsy exomes; n = 27 tumor transcriptomes) showed potential mechanisms of resistance (convergent evolution of HER2 activation, BRAF

Identifiants

pubmed: 38503755
doi: 10.1038/s41467-024-45835-6
pii: 10.1038/s41467-024-45835-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2446

Informations de copyright

© 2024. The Author(s).

Références

Spring, L. M. et al. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet 395, 817–827 (2020).
pubmed: 32145796 doi: 10.1016/S0140-6736(20)30165-3
Condorelli, R. et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 29, 640–645 (2018).
pubmed: 29236940 doi: 10.1093/annonc/mdx784
O’Leary, B. et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 8, 1390–1403 (2018).
pubmed: 30206110 pmcid: 6368247 doi: 10.1158/2159-8290.CD-18-0264
Li, Z. et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell 34, 893–905.e898 (2018).
pubmed: 30537512 pmcid: 6294301 doi: 10.1016/j.ccell.2018.11.006
Wander, S. A. et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor–positive metastatic breast cancer. Cancer Discov. 10, 1174–1193 (2020).
pubmed: 32404308 pmcid: 8815415 doi: 10.1158/2159-8290.CD-19-1390
Turner, N. C. et al. Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer. J. Clin. Oncol. 37, 1169–1178 (2019).
pubmed: 30807234 pmcid: 6506420 doi: 10.1200/JCO.18.00925
Yang, C. et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36, 2255–2264 (2017).
pubmed: 27748766 doi: 10.1038/onc.2016.379
Cornell, L., Wander, S. A., Visal, T., Wagle, N. & Shapiro, G. I. MicroRNA-mediated suppression of the TGF-beta pathway confers transmissible and reversible CDK4/6 inhibitor resistance. Cell Rep. 26, 2667–2680.e2667 (2019).
pubmed: 30840889 pmcid: 6449498 doi: 10.1016/j.celrep.2019.02.023
Li, Q. et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 12, 356–371 (2022).
pubmed: 34544752 doi: 10.1158/2159-8290.CD-20-1726
Prat, A. et al. Correlative biomarker analysis of intrinsic subtypes and efficacy across the MONALEESA phase III studies. J. Clin. Oncol. 39, 1458–1467 (2021).
pubmed: 33769862 pmcid: 8196091 doi: 10.1200/JCO.20.02977
Nayar, U. et al. Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 51, 207–216 (2019).
pubmed: 30531871 doi: 10.1038/s41588-018-0287-5
Mao, P. et al. Acquired FGFR and FGF alterations confer resistance to estrogen receptor (ER) targeted therapy in ER(+) metastatic breast cancer. Clin. Cancer Res. 26, 5974–5989 (2020).
pubmed: 32723837 doi: 10.1158/1078-0432.CCR-19-3958
Costa, C. et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kalpha inhibitors in breast cancer. Cancer Discov. 10, 72–85 (2020).
pubmed: 31594766 doi: 10.1158/2159-8290.CD-18-0830
Formisano, L. et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat. Commun. 10, 1373 (2019).
pubmed: 30914635 pmcid: 6435685 doi: 10.1038/s41467-019-09068-2
Turner, N. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70, 2085–2094 (2010).
pubmed: 20179196 pmcid: 2832818 doi: 10.1158/0008-5472.CAN-09-3746
Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438.e426 (2018).
pubmed: 30205045 pmcid: 6327853 doi: 10.1016/j.ccell.2018.08.008
Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560–564 (2019).
pubmed: 31118521 doi: 10.1038/s41586-019-1056-z
Hanker, A. B., Sudhan, D. R. & Arteaga, C. L. Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513 (2020).
pubmed: 32289273 pmcid: 7169993 doi: 10.1016/j.ccell.2020.03.009
Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).
pubmed: 22149876 doi: 10.1056/NEJMoa1109653
Barroso-Sousa, R. et al. A phase I study of palbociclib (PALBO) plus everolimus (EVE) and exemestane (EXE) in hormone-receptor positive (HR+)/HER2- metastatic breast cancer (MBC) after progression on a CDK4/6 inhibitor (CDK4/6i): safety, tolerability and pharmacokinetic (PK) analysis. J. Clin. Oncol. 36, 1068–1068 (2018).
doi: 10.1200/JCO.2018.36.15_suppl.1068
Grabiner, B. C. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4, 554–563 (2014).
pubmed: 24631838 pmcid: 4012430 doi: 10.1158/2159-8290.CD-13-0929
Wagle, N. et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 4, 546–553 (2014).
pubmed: 24625776 pmcid: 4122326 doi: 10.1158/2159-8290.CD-13-0353
Kwiatkowski, D. J. et al. Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 22, 2445–2452 (2016).
pubmed: 26831717 pmcid: 4976069 doi: 10.1158/1078-0432.CCR-15-2631
Xu, J. et al. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J. Clin. Invest. 126, 3526–3540 (2016).
pubmed: 27482884 pmcid: 5004947 doi: 10.1172/JCI86120
Hyman, D. M. et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554, 189–194 (2018).
pubmed: 29420467 pmcid: 5808581 doi: 10.1038/nature25475
Bose, R. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3, 224–237 (2013).
pubmed: 23220880 doi: 10.1158/2159-8290.CD-12-0349
Prat, A. & Parker, J. S. Standardized versus research-based PAM50 intrinsic subtyping of breast cancer. Clin. Transl. Oncol. 22, 953–955 (2020).
pubmed: 31435878 doi: 10.1007/s12094-019-02203-x
Wagle, N. et al. The Metastatic Breast Cancer Project: a national direct-to-patient initiative to accelerate genomics research. J. Clin. Oncol. 34, LBA1519 (2016).
doi: 10.1200/JCO.2016.34.18_suppl.LBA1519
Aftimos, P. et al. Genomic and transcriptomic analyses of breast cancer primaries and matched metastases in AURORA, the breast international group (BIG) molecular screening initiative. Cancer Discov. 11, 2796–2811 (2021).
pubmed: 34183353 pmcid: 9414283 doi: 10.1158/2159-8290.CD-20-1647
Sanchez-Guixe, M. et al. High FGFR1-4 mRNA expression levels correlate with response to selective FGFR inhibitors in breast cancer. Clin. Cancer Res. 28, 137–149 (2022).
pubmed: 34593528 doi: 10.1158/1078-0432.CCR-21-1810
Wander, S. A. et al. Abstract PD7-08: Igf1r mediates cdk4/6 inhibitor (cdk4/6i) resistance in tumor samples and in cellular models. Cancer Res. 81, PD7-08–PD07-08 (2021).
doi: 10.1158/1538-7445.SABCS20-PD7-08
Fox, E. M. et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res. 71, 6773–6784 (2011).
pubmed: 21908557 pmcid: 3206206 doi: 10.1158/0008-5472.CAN-11-1295
Hurvitz, S. A. et al. Abstract PD13-03: Ribociclib, everolimus, exemestane triplet therapy in HR+/HER2− advanced breast cancer after progression on a CDK4/6 inhibitor: final efficacy, safety, and biomarker results from TRINITI-1. Cancer Res. 82, PD13–03-PD13-03 (2022).
doi: 10.1158/1538-7445.SABCS21-ES1-3
Bardia, A. et al. Phase I/II trial of exemestane, ribociclib, and everolimus in women with HR(+)/HER2(-) advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1). Clin. Cancer Res. 27, 4177–4185 (2021).
pubmed: 33722897 pmcid: 8487593 doi: 10.1158/1078-0432.CCR-20-2114
Bidard, F. C. et al. Elacestrant (oral selective estrogen receptor degrader) Versus Standard Endocrine Therapy for Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From the Randomized Phase III EMERALD Trial. J. Clin. Oncol. 40, 3246–3256 (2022).
pubmed: 35584336 pmcid: 9553388 doi: 10.1200/JCO.22.00338
Wander, S. A. et al. Clinical outcomes with abemaciclib after prior CDK4/6 inhibitor progression in breast cancer: A multicenter experience. J. Natl Compr. Canc Netw. 1–8 https://doi.org/10.6004/jnccn.2020.7662 (2021).
Kalinsky, K. et al. A randomized, phase II trial of fulvestrant or exemestane with or without ribociclib after progression on anti-estrogen therapy plus cyclin-dependent kinase 4/6 inhibition (CDK 4/6i) in patients (pts) with unresectable or hormone receptor–positive (HR+), HER2-negative metastatic breast cancer (MBC): MAINTAIN trial. J. Clin. Oncol. 40, LBA1004 (2022).
doi: 10.1200/JCO.2022.40.17_suppl.LBA1004
Freeman-Cook, K. et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 39, 1404–1421 e1411 (2021).
pubmed: 34520734 doi: 10.1016/j.ccell.2021.08.009
Hafner, M. et al. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem. Biol. 26, 1067–1080.e1068 (2019).
pubmed: 31178407 pmcid: 6936329 doi: 10.1016/j.chembiol.2019.05.005
Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018).
pubmed: 29763622 pmcid: 5957297 doi: 10.1016/j.ccell.2018.03.025
Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).
pubmed: 31723286 pmcid: 8008476 doi: 10.1038/s41586-019-1730-1
Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 518, 240–244 (2015).
pubmed: 25409150 doi: 10.1038/nature13948
Smyth, L. M. et al. Characteristics and outcome of AKT1 (E17K)-mutant breast cancer defined through AACR project GENIE, a clinicogenomic registry. Cancer Discov. 10, 526–535 (2020).
pubmed: 31924700 pmcid: 7125034 doi: 10.1158/2159-8290.CD-19-1209
Oliveira, M. et al. Abstract P5-16-11: Ipatasertib (ipat) in combination with palbociclib (palbo) and fulvestrant (fulv) in patients (pts) with hormone receptor-positive (HR+) HER2-negative advanced breast cancer (aBC). Cancer Res. 82, P5-16-11–P15-16-11 (2022).
doi: 10.1158/1538-7445.SABCS21-P5-16-11
Layman, R. et al. Abstract PD13-02: phase Ib expansion study of gedatolisib in combination with palbociclib and endocrine therapy in women with ER+ metastatic breast cancer. Cancer Res. 82, PD13-02–PD13-02 (2022).
doi: 10.1158/1538-7445.SABCS21-PD13-02
Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).
pubmed: 29109393 pmcid: 5673918 doi: 10.1038/s41467-017-00965-y
Garcia, E. P. et al. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 141, 751–758 (2017).
pubmed: 28557599 doi: 10.5858/arpa.2016-0527-OA
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
pubmed: 19097774 doi: 10.1016/j.ejca.2008.10.026
Beaver, J. A. & Park, B. H. The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol. 8, 651–657 (2012).
pubmed: 22764762 doi: 10.2217/fon.12.49
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Van der Auwera GAaOC, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra 1st Edition. O’Reilly Media, Inc. (2020).
Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).
pubmed: 23415222 pmcid: 3575604 doi: 10.1016/j.cell.2013.01.019
Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).
pubmed: 22544022 pmcid: 4383288 doi: 10.1038/nbt.2203
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 2017 1–16 (2017).
Leshchiner, I., et al. Comprehensive analysis of tumour initiation, spatial and temporal progression under multiple lines of treatment. bioRxiv, 508127 (2019).
Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. R. Meteorol. Soc. 128, 2145–2166 (2002).
doi: 10.1256/003590002320603584
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Graubert, A., Aguet, F., Ravi, A., Ardlie, K. G., Getz, G. RNA-SeQC 2: efficient RNA-seq quality control and quantification for large cohorts. Bioinformatics 37, 3048–3050 (2021).
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669 pmcid: 3307112 doi: 10.1093/bioinformatics/bts034
Korotkevich, G. et al. Fast gene set enrichment analysis. bioRxiv, 060012 (2021).
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021 pmcid: 4707969 doi: 10.1016/j.cels.2015.12.004
Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).
pubmed: 19204204 pmcid: 2667820 doi: 10.1200/JCO.2008.18.1370
Gendoo, D. M. et al. Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer. Bioinformatics 32, 1097–1099 (2016).
pubmed: 26607490 doi: 10.1093/bioinformatics/btv693

Auteurs

Jorge Gómez Tejeda Zañudo (J)

Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Romualdo Barroso-Sousa (R)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.
Oncology Center, Hospital Sírio-Libanês, Brasília, Brazil.

Esha Jain (E)

Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Repare Therapeutics, Cambridge, MA, USA.

Qingchun Jin (Q)

Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA.

Tianyu Li (T)

Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA.

Jorge E Buendia-Buendia (JE)

Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Cellarity, Somerville, MA, USA.

Alyssa Pereslete (A)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Daniel L Abravanel (DL)

Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Arlindo R Ferreira (AR)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Breast Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.

Eileen Wrabel (E)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Karla Helvie (K)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Melissa E Hughes (ME)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Ann H Partridge (AH)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Beth Overmoyer (B)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Nancy U Lin (NU)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Nabihah Tayob (N)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.
Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA.

Sara M Tolaney (SM)

Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Nikhil Wagle (N)

Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA. Nikhil_Wagle@dfci.harvard.edu.
Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. Nikhil_Wagle@dfci.harvard.edu.
Department of Medicine, Harvard Medical School, Boston, MA, USA. Nikhil_Wagle@dfci.harvard.edu.
Genentech, South San Francisco, CA, USA. Nikhil_Wagle@dfci.harvard.edu.

Classifications MeSH