B-cell receptor signaling activity identifies patients with mantle cell lymphoma at higher risk of progression.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 Mar 2024
Historique:
received: 31 10 2023
accepted: 27 02 2024
medline: 20 3 2024
pubmed: 20 3 2024
entrez: 20 3 2024
Statut: epublish

Résumé

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy characterized by a high clinical variability. Therefore, there is a critical need to define parameters that identify high-risk patients for aggressive disease and therapy resistance. B-cell receptor (BCR) signaling is crucial for MCL initiation and progression and is a target for therapeutic intervention. We interrogated BCR signaling proteins (SYK, LCK, BTK, PLCγ2, p38, AKT, NF-κB p65, and STAT5) in 30 primary MCL samples using phospho-specific flow cytometry. Anti-IgM modulation induced heterogeneous BCR signaling responses among samples allowing the identification of two clusters with differential responses. The cluster with higher response was associated with shorter progression free survival (PFS) and overall survival (OS). Moreover, higher constitutive AKT activity was predictive of inferior response to the Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib. Time-to-event analyses showed that MCL international prognostic index (MIPI) high-risk category and higher STAT5 response were predictors of shorter PFS and OS whilst MIPI high-risk category and high SYK response predicted shorter OS. In conclusion, we identified BCR signaling properties associated with poor clinical outcome and resistance to ibrutinib, thus highlighting the prognostic and predictive significance of BCR activity and advancing our understanding of signaling heterogeneity underlying clinical behavior of MCL.

Identifiants

pubmed: 38503806
doi: 10.1038/s41598-024-55728-9
pii: 10.1038/s41598-024-55728-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6595

Subventions

Organisme : Fondazione Italiana Linfomi (FIL)
ID : PGR Ed. 2019 to F.M.Q., MANTLE-FIRST BIO study, (https://clinicaltrials.gov/ct2/show/NCT04882475

Informations de copyright

© 2024. The Author(s).

Références

Armitage, J. O. & Longo, D. L. Mantle-cell lymphoma. N. Engl. J. Med. 386, 2495–2506 (2022).
doi: 10.1056/NEJMra2202672 pubmed: 35767440
Jain, P. & Wang, M. L. Mantle cell lymphoma in 2022—A comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am. J. Hematol. 97, 638–656 (2022).
doi: 10.1002/ajh.26523 pubmed: 35266562
Campo, E. et al. The international consensus classification of mature lymphoid neoplasms: A report from the clinical advisory committee. Blood 140, 1229–1253 (2022).
doi: 10.1182/blood.2022015851 pubmed: 35653592 pmcid: 9479027
Navarro, A., Beà, S., Jares, P. & Campo, E. Molecular pathogenesis of mantle cell lymphoma. Hematology/Oncology Clinics of North America 34, 795–807. https://doi.org/10.1016/j.hoc.2020.05.002 (2020).
doi: 10.1016/j.hoc.2020.05.002 pubmed: 32861278 pmcid: 7473344
Sander, B. et al. Mantle cell lymphoma—A spectrum from indolent to aggressive disease. Virchows Arch. 468, 245–257 (2016).
doi: 10.1007/s00428-015-1840-6 pubmed: 26298543
Hoster, E. et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 111, 558–565 (2008).
doi: 10.1182/blood-2007-06-095331 pubmed: 17962512
Streich, L. et al. Aggressive morphologic variants of mantle cell lymphoma characterized with high genomic instability showing frequent chromothripsis, CDKN2A/B loss, and TP53 mutations: A multi-institutional study. Genes Chromosom. Cancer 59, 484–494 (2020).
doi: 10.1002/gcc.22849 pubmed: 32277542
Beà, S. et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc. Natl. Acad. Sci. U. S. A. 110, 18250–18255 (2013).
doi: 10.1073/pnas.1314608110 pubmed: 24145436 pmcid: 3831489
Quaglia, F. M. & Visco, C. Mantle cell lymphoma patients in first relapse: We pretty much know what to do. Oncotarget 12, 1724–1726. https://doi.org/10.18632/ONCOTARGET.27980 (2021).
doi: 10.18632/ONCOTARGET.27980 pubmed: 34434500 pmcid: 8378770
Saba, N. S. et al. Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma. Blood 128, 82–92 (2016).
doi: 10.1182/blood-2015-11-681460 pubmed: 27127301 pmcid: 4937360
Myklebust, J. H. et al. Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood 129, 759–770 (2017).
doi: 10.1182/blood-2016-05-718494 pubmed: 28011673 pmcid: 5301824
Bomben, R. et al. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: Results from the Fondazione Italiana Linfomi MCL-0208 trial. Haematologica 103, 849–856 (2018).
doi: 10.3324/haematol.2017.184325 pubmed: 29472356 pmcid: 5927985
Scupoli, M. T. & Pizzolo, G. Signaling pathways activated by the B-cell receptor in chronic lymphocytic leukemia. Exp. Rev. Hematol. 5, 341–348. https://doi.org/10.1586/ehm.12.21 (2012).
doi: 10.1586/ehm.12.21
Merolle, M. I., Ahmed, M., Nomie, K. & Wang, M. L. The B cell receptor signaling pathway in mantle cell lymphoma. Oncotarget 9, 25332–25341 (2018).
doi: 10.18632/oncotarget.25011 pubmed: 29861875 pmcid: 5982769
Burger, J. A. & Wiestner, A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer 18, 148–167 (2018).
doi: 10.1038/nrc.2017.121 pubmed: 29348577
Ahmed, M. et al. Interrogating B cell signaling pathways: A quest for novel therapies for mantle cell lymphoma. Sci. Signal. 12, 4105. https://doi.org/10.1126/scisignal.aat4105 (2019).
doi: 10.1126/scisignal.aat4105
Rahal, R. et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma. Nat. Med. 20, 87–92 (2014).
doi: 10.1038/nm.3435 pubmed: 24362935
Novero, A., Ravella, P. M., Chen, Y., Dous, G. & Liu, D. Ibrutinib for B cell malignancies. Exp. Hematol. Oncol. 3, 4 (2014).
doi: 10.1186/2162-3619-3-4 pubmed: 24472371 pmcid: 3913970
Zinzani, P. L. et al. Use of BTK inhibitors with focus on ibrutinib in mantle cell lymphoma: An expert panel opinion statement. Hematol. Oncol. 40, 518–527 (2022).
doi: 10.1002/hon.2983 pubmed: 35247223
Advani, R. H. et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 31, 88–94 (2013).
doi: 10.1200/JCO.2012.42.7906 pubmed: 23045577
Visco, C. et al. Time to progression of mantle cell lymphoma after high-dose cytarabine-based regimens defines patients risk for death. Br. J. Haematol. 185, 940–944. https://doi.org/10.1111/bjh.15643 (2019).
doi: 10.1111/bjh.15643 pubmed: 30407625
Visco, C. et al. Outcomes in first relapsed-refractory younger patients with mantle cell lymphoma: Results from the MANTLE-FIRST study. Leukemia 35, 787–795 (2021).
doi: 10.1038/s41375-020-01013-3 pubmed: 32782382
Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).
doi: 10.1056/NEJMoa1306220 pubmed: 23782157 pmcid: 4513941
Cheng, S. et al. Functional characterization of BTK C481S mutation that confers ibrutinib resistance: Exploration of alternative kinase inhibitors. Leukemia 29, 895–900 (2015).
doi: 10.1038/leu.2014.263 pubmed: 25189416
Chiron, D. et al. Cell-cycle reprogramming for Pi3K inhibition overrides a relapse-specific C481s BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov. 4, 1022–1035 (2014).
doi: 10.1158/2159-8290.CD-14-0098 pubmed: 25082755 pmcid: 4155003
Ondrisova, L. & Mraz, M. Genetic and non-genetic mechanisms of resistance to BCR signaling inhibitors in B cell malignancies. Front Oncol 10, 591577. https://doi.org/10.3389/fonc.2020.591577 (2020).
doi: 10.3389/fonc.2020.591577 pubmed: 33154951 pmcid: 7116322
Gauld, S. B., Dal Porto, J. M. & Cambier, J. C. B cell antigen receptor signaling: Roles in cell development and disease. Science 296, 1641–1642. https://doi.org/10.1126/science.1071546 (2002).
doi: 10.1126/science.1071546 pubmed: 12040177
Manning, B. D. & Toker, A. AKT/PKB signaling: Navigating the network. Cell 169, 381–405. https://doi.org/10.1016/j.cell.2017.04.001 (2017).
doi: 10.1016/j.cell.2017.04.001 pubmed: 28431241 pmcid: 5546324
Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635. https://doi.org/10.1016/j.cell.2017.07.029 (2017).
doi: 10.1016/j.cell.2017.07.029 pubmed: 28802037 pmcid: 5726441
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).
doi: 10.1038/nature12912 pubmed: 24390350 pmcid: 4048962
Rudelius, M. et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108, 1668–1676 (2006).
doi: 10.1182/blood-2006-04-015586 pubmed: 16645163 pmcid: 1895501
Rao, E. et al. The miRNA-17 ∼ 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 26, 1064–1072 (2012).
doi: 10.1038/leu.2011.305 pubmed: 22116552
Zhao, X. et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat. Commun. 8, 14920 (2017).
doi: 10.1038/ncomms14920 pubmed: 28416797 pmcid: 5399304
Zhang, S. et al. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat. Commun. 12, 1–17 (2021).
Kurosaki, T. et al. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J. Exp. Med. 179, 1725–1729 (1994).
doi: 10.1084/jem.179.5.1725 pubmed: 7513017
Rinaldi, A. et al. Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br. J. Haematol. 132, 303–316 (2006).
doi: 10.1111/j.1365-2141.2005.05883.x pubmed: 16409295
Sharma, R. et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126, 1777–1784 (2015).
doi: 10.1182/blood-2014-12-615492 pubmed: 26297739 pmcid: 4600017
Kaplan, J. et al. Tak-659, an investigational reversible dual SYK/FLT-3 inhibitor, in patients with lymphoma: updated results from dose-escalation and expansion cohorts of a phase 1 study. Hematol. Oncol. 35, 72–74 (2017).
doi: 10.1002/hon.2437_60
Thieme, E. et al. Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma. Cell Death Dis. 13, 1–11 (2022).
doi: 10.1038/s41419-022-04684-1
Zhang, Y. et al. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov. 7, 192 (2021).
doi: 10.1038/s41420-021-00578-x pubmed: 34312374 pmcid: 8313533
Cavallini, C. et al. Low catalase expression confers redox hypersensitivity and identifies an indolent clinical behavior in CLL. Blood 131, 1942–1954 (2018).
doi: 10.1182/blood-2017-08-800466 pubmed: 29467184
Cesano, A. et al. Association between B-cell receptor responsiveness and disease progression in B-cell chronic lymphocytic leukemia: Results from single cell network profiling studies. Haematologica 98, 626–634 (2013).
doi: 10.3324/haematol.2012.071910 pubmed: 23144194 pmcid: 3685273
Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).
doi: 10.1016/j.cell.2004.06.028 pubmed: 15260991
Irish, J. M., Czerwinski, D. K., Nolan, G. P. & Levy, R. Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells. Blood 108, 3135–3142 (2006).
doi: 10.1182/blood-2006-02-003921 pubmed: 16835385 pmcid: 1895530
Krutzik, P. O., Clutter, M. R., Trejo, A. & Nolan, G. P. Fluorescent cell barcoding for multiplex flow cytometry. Curr. Protoc. Cytom. https://doi.org/10.1002/0471142956.cy0631s55 (2011).
doi: 10.1002/0471142956.cy0631s55 pubmed: 21207359 pmcid: 3036011
Irish, J. M., Czerwinski, D. K., Nolan, G. P. & Levy, R. Kinetics of B cell receptor signaling in human B cell subsets mapped by phosphospecific flow cytometry. J. Immunol. 177, 1581–1589 (2006).
doi: 10.4049/jimmunol.177.3.1581 pubmed: 16849466
Cheson, B. D. et al. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: The lugano classification. J. Clin. Oncol. 32, 3059–3067. https://doi.org/10.1200/JCO.2013.54.8800 (2014).
doi: 10.1200/JCO.2013.54.8800 pubmed: 25113753 pmcid: 4979083

Auteurs

Simona Gambino (S)

Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy.

Francesca Maria Quaglia (FM)

Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.

Marilisa Galasso (M)

Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy.

Chiara Cavallini (C)

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

Roberto Chignola (R)

Department of Biotechnology, University of Verona, Verona, Italy.

Ornella Lovato (O)

Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.

Luca Giacobazzi (L)

Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.

Simone Caligola (S)

Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.

Annalisa Adamo (A)

Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.

Santosh Putta (S)

BioLegend, Foster City, CA, USA.

Antonino Aparo (A)

Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.

Isacco Ferrarini (I)

Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy.
Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.

Stefano Ugel (S)

Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.

Rosalba Giugno (R)

Department of Computer Science, University of Verona, Verona, Italy.

Massimo Donadelli (M)

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.

Ilaria Dando (I)

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.

Mauro Krampera (M)

Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy.
Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.

Carlo Visco (C)

Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy. carlo.visco@univr.it.
Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy. carlo.visco@univr.it.

Maria Teresa Scupoli (MT)

Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy. mariateresa.scupoli@univr.it.
Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy. mariateresa.scupoli@univr.it.

Classifications MeSH