Comparison of mortality and outcomes of four respiratory viruses in the intensive care unit: a multicenter retrospective study.
ARDS
CARV
Influenza
RSV
SARS COV 2
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 Mar 2024
20 Mar 2024
Historique:
received:
13
07
2023
accepted:
22
02
2024
medline:
21
3
2024
pubmed:
21
3
2024
entrez:
21
3
2024
Statut:
epublish
Résumé
This retrospective study aimed to compare the mortality and burden of respiratory syncytial virus (RSV group), SARS-CoV-2 (COVID-19 group), non-H1N1 (Seasonal influenza group) and H1N1 influenza (H1N1 group) in adult patients admitted to intensive care unit (ICU) with respiratory failure. A total of 807 patients were included. Mortality was compared between the four following groups: RSV, COVID-19, seasonal influenza, and H1N1 groups. Patients in the RSV group had significantly more comorbidities than the other patients. At admission, patients in the COVID-19 group were significantly less severe than the others according to the simplified acute physiology score-2 (SAPS-II) and sepsis-related organ failure assessment (SOFA) scores. Using competing risk regression, COVID-19 (sHR = 1.61; 95% CI 1.10; 2.36) and H1N1 (sHR = 1.87; 95% CI 1.20; 2.93) were associated with a statistically significant higher mortality while seasonal influenza was not (sHR = 0.93; 95% CI 0.65; 1.31), when compared to RSV. Despite occurring in more severe patients, RSV and seasonal influenza group appear to be associated with a more favorable outcome than COVID-19 and H1N1 groups.
Identifiants
pubmed: 38509095
doi: 10.1038/s41598-024-55378-x
pii: 10.1038/s41598-024-55378-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6690Investigateurs
Fabrice Thiolliere
(F)
Emilie Joffredo
(E)
Lucille Jay
(L)
Marie Darien
(M)
Jean-Stéphane David
(JS)
Charlotte Cerruti
(C)
Maxime Lecocq
(M)
Guillaume Izaute
(G)
Thomas Collenot
(T)
Olivia Vassal
(O)
Informations de copyright
© 2024. The Author(s).
Références
Blount, R. E., Morris, J. A. & Savage, R. E. Recovery of cytopathogenic agent from chimpanzees with coryza. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. N. Y. N 92, 544–549 (1956).
doi: 10.3181/00379727-92-22538
Li, Y. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet Lond. Engl. 399, 2047–2064 (2022).
doi: 10.1016/S0140-6736(22)00478-0
Nair, H. et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 375, 1545–1555 (2010).
doi: 10.1016/S0140-6736(10)60206-1
pubmed: 20399493
pmcid: 2864404
Shi, T. et al. Global disease burden estimates of respiratory syncytial virus-associated acute respiratory infection in older adults in 2015: A systematic review and meta-analysis. J. Infect. Dis. 222, S577–S583 (2020).
doi: 10.1093/infdis/jiz059
pubmed: 30880339
Yoon, J. G. et al. Clinical characteristics and disease burden of respiratory syncytial virus infection among hospitalized adults. Sci. Rep. 10, 12106 (2020).
doi: 10.1038/s41598-020-69017-8
pubmed: 32694533
pmcid: 7374583
Choi, S.-H. et al. Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am. J. Respir. Crit. Care Med. 186, 325–332 (2012).
doi: 10.1164/rccm.201112-2240OC
pubmed: 22700859
Shorr, A. F., Fisher, K., Micek, S. T. & Kollef, M. H. The burden of viruses in pneumonia associated with acute respiratory failure: An underappreciated issue. CHEST 154, 84–90 (2018).
doi: 10.1016/j.chest.2017.12.005
pubmed: 29274318
Fendrick, A. M., Monto, A. S., Nightengale, B. & Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med. 163, 487–494 (2003).
doi: 10.1001/archinte.163.4.487
pubmed: 12588210
de Marignan, D. et al. A retrospective comparison of COVID-19 and seasonal influenza mortality and outcomes in the ICUs of a French university hospital. Eur. J. Anaesthesiol. 39, 427–435 (2022).
doi: 10.1097/EJA.0000000000001672
pubmed: 35200203
Gelissen, H. et al. Effect of low-normal vs high-normal oxygenation targets on organ dysfunction in critically Ill patients: A randomized clinical trial. JAMA 326, 940 (2021).
doi: 10.1001/jama.2021.13011
pubmed: 34463696
Coussement, J. et al. Characteristics and outcomes of patients in the ICU with respiratory syncytial virus compared with those with influenza infection: A multicenter matched cohort study. Chest 161, 1475–1484 (2022).
doi: 10.1016/j.chest.2021.12.670
pubmed: 35063450
Vacheron, C. H. Improved 30-day survival estimation in ICU patients: A comparative analysis of different approaches with real-world data. Crit. Care Med. https://doi.org/10.1097/CCM.0000000000006097 (2023).
doi: 10.1097/CCM.0000000000006097
pubmed: 37882642
Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2001).
doi: 10.1214/ss/1009213726
Sauerbrei, W. et al. State of the art in selection of variables and functional forms in multivariable analysis—Outstanding issues. Diagn. Progn. Res. 4, 3 (2020).
doi: 10.1186/s41512-020-00074-3
pubmed: 32266321
pmcid: 7114804
Vacheron, C.-H., Friggeri, A., Allaouchiche, B., Maucort-Boulch, D. & Coz, E. Quiet scandal: Variable selection in three major intensive care medicine journals. Intensive Care Med. 47, 1487–1489 (2021).
doi: 10.1007/s00134-021-06535-7
pubmed: 34546399
Heinze, G., Wallisch, C. & Dunkler, D. Variable selection—A review and recommendations for the practicing statistician. Biom. J. 60, 431–449 (2018).
doi: 10.1002/bimj.201700067
pubmed: 29292533
pmcid: 5969114
Chorazka, M., Flury, D., Herzog, K., Albrich, W. C. & Vuichard-Gysin, D. Clinical outcomes of adults hospitalized for laboratory confirmed respiratory syncytial virus or influenza virus infection. PLOS ONE 16, e0253161 (2021).
doi: 10.1371/journal.pone.0253161
pubmed: 34292983
pmcid: 8297903
Ackerson, B. et al. Severe morbidity and mortality associated with respiratory syncytial virus versus influenza infection in hospitalized older adults. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 69, 197–203 (2019).
doi: 10.1093/cid/ciy991
Coussement, J. et al. Characteristics and outcomes of patients in the ICU with respiratory syncytial virus compared with those with influenza infection: A multicenter matched cohort study. Chest https://doi.org/10.1016/j.chest.2021.12.670 (2022).
doi: 10.1016/j.chest.2021.12.670
pubmed: 35063450
Heo, M. et al. Comparison of clinical features and outcomes between SARS-CoV-2 and Non-SARS-CoV-2 respiratory viruses associated acute respiratory distress syndrome: Retrospective analysis. J. Clin. Med. 11, 2246 (2022).
doi: 10.3390/jcm11082246
pubmed: 35456338
pmcid: 9027313
Hedberg, P. et al. Clinical phenotypes and outcomes of SARS-CoV-2, influenza, RSV and seven other respiratory viruses: A retrospective study using complete hospital data. Thorax 77, 1–10 (2022).
doi: 10.1136/thoraxjnl-2021-216949
Hall, C. B. et al. Occurrence of groups A and B of respiratory syncytial virus over 15 years: Associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. J. Infect. Dis. 162, 1283–1290 (1990).
doi: 10.1093/infdis/162.6.1283
pubmed: 2230258
Callaway, E. Beyond Omicron: What’s next for COVID’s viral evolution. Nature 600, 204–207 (2021).
doi: 10.1038/d41586-021-03619-8
pubmed: 34876665
Looi, M.-K. Covid-19: Is a second wave hitting Europe?. BMJ https://doi.org/10.1136/bmj.m4113 (2020).
doi: 10.1136/bmj.m4113
pubmed: 33328165
Lee, A. C. K. & Morling, J. R. Living with endemic COVID-19. Public Health 205, 26–27 (2022).
doi: 10.1016/j.puhe.2022.01.017
pubmed: 35219839
Antia, R. & Halloran, M. E. Transition to endemicity: Understanding COVID-19. Immunity 54, 2172–2176 (2021).
doi: 10.1016/j.immuni.2021.09.019
pubmed: 34626549
pmcid: 8461290
Jung, C. et al. Evolution of hospitalized patient characteristics through the first three COVID-19 waves in Paris area using machine learning analysis. PLOS ONE 17, e0263266 (2022).
doi: 10.1371/journal.pone.0263266
pubmed: 35192649
pmcid: 8863256
Ameratunga, R. et al. SARS-CoV-2 omicron: Light at the end of the long pandemic tunnel or another false dawn for immunodeficient patients?. J. Allergy Clin. Immunol. Pract. 10, 2267–2273 (2022).
doi: 10.1016/j.jaip.2022.06.011
pubmed: 35752434
pmcid: 9220855
Hussey, H. et al. Assessing the clinical severity of the Omicron variant in the Western Cape Province, South Africa, using the diagnostic PCR proxy marker of RdRp target delay to distinguish between Omicron and Delta infections—A survival analysis. Int. J. Infect. Dis. 118, 150–154 (2022).
doi: 10.1016/j.ijid.2022.02.051
pubmed: 35235826
pmcid: 8882068
Domachowske, J. B., Anderson, E. J. & Goldstein, M. The future of respiratory syncytial virus disease prevention and treatment. Infect. Dis. Ther. 10, 47–60 (2021).
doi: 10.1007/s40121-020-00383-6
pubmed: 33656652
pmcid: 7926075
DeVincenzo, J. P. et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N. Engl. J. Med. 371, 711–722 (2014).
doi: 10.1056/NEJMoa1401184
pubmed: 25140957
DeVincenzo, J. P. et al. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N. Engl. J. Med. 373, 2048–2058 (2015).
doi: 10.1056/NEJMoa1413275
pubmed: 26580997
Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection | Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.01802-15 .
Hammitt, L. L. et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 386, 837–846 (2022).
doi: 10.1056/NEJMoa2110275
pubmed: 35235726
Guérin, C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168 (2013).
doi: 10.1056/NEJMoa1214103
pubmed: 23688302
Petrucci, N. & Iacovelli, W. Ventilation with lower tidal volumes versus traditional tidal volumes in adults for acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003844.pub2 (2004).
doi: 10.1002/14651858.CD003844.pub2
pubmed: 15106222
Burns, K. E. A. et al. Pressure and volume limited ventilation for the ventilatory management of patients with acute lung injury: A systematic review and meta-analysis. PloS One 6, e14623 (2011).
doi: 10.1371/journal.pone.0014623
pubmed: 21298026
pmcid: 3030554
Gainnier, M. et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit. Care Med. 32, 113–119 (2004).
doi: 10.1097/01.CCM.0000104114.72614.BC
pubmed: 14707568
Forel, J.-M. et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit. Care Med. 34, 2749–2757 (2006).
doi: 10.1097/01.CCM.0000239435.87433.0D
pubmed: 16932229
Angus, D. C. et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: The REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA 324, 1317–1329 (2020).
doi: 10.1001/jama.2020.17022
pubmed: 32876697
pmcid: 7489418