The Arctic Plant Aboveground Biomass Synthesis Dataset.
Journal
Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192
Informations de publication
Date de publication:
20 Mar 2024
20 Mar 2024
Historique:
received:
29
11
2023
accepted:
14
03
2024
medline:
21
3
2024
pubmed:
21
3
2024
entrez:
21
3
2024
Statut:
epublish
Résumé
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m
Identifiants
pubmed: 38509110
doi: 10.1038/s41597-024-03139-w
pii: 10.1038/s41597-024-03139-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
305Subventions
Organisme : National Aeronautics and Space Administration (NASA)
ID : 80NSSC21K1364
Organisme : National Aeronautics and Space Administration (NASA)
ID : 80NSSC22K1247
Organisme : National Aeronautics and Space Administration (NASA)
ID : 80NSSC22K1247
Organisme : National Aeronautics and Space Administration (NASA)
ID : NNX12AK83G
Organisme : National Aeronautics and Space Administration (NASA)
ID : NNX15AP04H
Organisme : National Science Foundation (NSF)
ID : 2127273
Organisme : National Science Foundation (NSF)
ID : 1417745
Organisme : National Science Foundation (NSF)
ID : 1636476
Organisme : National Science Foundation (NSF)
ID : 2224776
Organisme : National Science Foundation (NSF)
ID : 2127273
Organisme : Academy of Finland (Suomen Akatemia)
ID : 330319
Organisme : Academy of Finland (Suomen Akatemia)
ID : 330319
Organisme : Academy of Finland (Suomen Akatemia)
ID : 330845
Organisme : Academy of Finland (Suomen Akatemia)
ID : 1342890
Organisme : Academy of Finland (Suomen Akatemia)
ID : 256991
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2021-05767
Organisme : Fonds de Recherche du Québec - Nature et Technologies (Quebec Fund for Research in Nature and Technology)
ID : FRQNT-2018-PR-208107
Organisme : Fonds de Recherche du Québec - Nature et Technologies (Quebec Fund for Research in Nature and Technology)
ID : FRQNT-2018-PR-208107
Informations de copyright
© 2024. The Author(s).
Références
Downing, A. & Cuerrier, A. A synthesis of the impacts of climate change on the First Nations and Inuit of Canada. Indian Journal of Traditional Knowledge 10, 57–70 (2011).
Burkhard, B. & Müller, F. Indicating human-environmental system properties: Case study northern Fenno-Scandinavian reindeer herding. Ecological Indicators 8, 828–840, https://doi.org/10.1016/j.ecolind.2007.06.003 (2008).
doi: 10.1016/j.ecolind.2007.06.003
Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I. & Grosse, G. Tundra be dammed: Beaver colonization of the Arctic. Global Change Biology 24, 4478–4488, https://doi.org/10.1111/gcb.14332 (2018).
doi: 10.1111/gcb.14332
pubmed: 29845698
Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3, 673–677, https://doi.org/10.1038/nclimate1858 (2013).
doi: 10.1038/nclimate1858
Epstein, H. E. et al. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters 7, 015506, https://doi.org/10.1088/1748-9326/7/1/015506 (2012).
doi: 10.1088/1748-9326/7/1/015506
Chapin, F. S. 3rd et al. Role of land-surface changes in arctic summer warming. Science 310, 657–660, https://doi.org/10.1126/science.1117368 (2005).
doi: 10.1126/science.1117368
pubmed: 16179434
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3, 168, https://doi.org/10.1038/s43247-022-00498-3 (2022).
doi: 10.1038/s43247-022-00498-3
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).
Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551, https://doi.org/10.1038/s41586-022-05093-2 (2022).
doi: 10.1038/s41586-022-05093-2
pubmed: 35948635
pmcid: 9385489
Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16, 053001, https://doi.org/10.1088/1748-9326/abf28b (2021).
doi: 10.1088/1748-9326/abf28b
Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62, https://doi.org/10.1038/s41586-018-0563-7 (2018).
doi: 10.1038/s41586-018-0563-7
pubmed: 30258229
Rees, W. G. et al. Is subarctic forest advance able to keep pace with climate change? Global Change Biology 26, 3965–3977, https://doi.org/10.1111/gcb.15113 (2020).
doi: 10.1111/gcb.15113
pubmed: 32281711
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nature Climate Change 10, 106–117, https://doi.org/10.1038/s41558-019-0688-1 (2020).
doi: 10.1038/s41558-019-0688-1
Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11, 4621, https://doi.org/10.1038/s41467-020-18479-5 (2020).
doi: 10.1038/s41467-020-18479-5
pubmed: 32963240
pmcid: 7509805
Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Phil. Trans. R. Soc. B 368, 20120482, https://doi.org/10.1098/rstb.2012.0482 (2013).
doi: 10.1098/rstb.2012.0482
pubmed: 23836788
pmcid: 3720055
Andreu-Hayles, L. et al. A narrow window of summer temperatures associated with shrub growth in Arctic Alaska. Environmental Research Letters 15, 105012, https://doi.org/10.1088/1748-9326/ab897f (2020).
doi: 10.1088/1748-9326/ab897f
Hill, G. B. & Henry, G. H. R. Responses of High Arctic wet sedge tundra to climate warming since 1980. Global Change Biology 17, 276–287, https://doi.org/10.1111/j.1365-2486.2010.02244.x (2011).
doi: 10.1111/j.1365-2486.2010.02244.x
Forbes, B. C. & Stammler, F. Arctic climate change discourse: the contrasting politics of research agendas in the West and Russia. Polar Research 28, 28–42, https://doi.org/10.1111/j.1751-8369.2009.00100.x (2009).
doi: 10.1111/j.1751-8369.2009.00100.x
Cuerrier, A., Brunet, N. D., Gérin-Lajoie, J., Downing, A. & Lévesque, E. The study of Inuit knowledge of climate change in Nunavik, Quebec: a mixed methods approach. Human Ecology 43, 379–394, https://doi.org/10.1007/s10745-015-9750-4 (2015).
doi: 10.1007/s10745-015-9750-4
Zhou, J. et al. Enhanced shrub growth in the Arctic increases habitat connectivity for browsing herbivores. Global Change Biology https://doi.org/10.1111/gcb.15104 (2020).
doi: 10.1111/gcb.15104
pubmed: 33283909
Henry, G. H. R. et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Science 8, 550–571, https://doi.org/10.1139/as-2022-0041 (2022).
doi: 10.1139/as-2022-0041
Meier, C. & Jones, K. TOS science design for plant biomass, productivity, and leaf area index. National Ecological Observatory Network, NEON document # NEON.DOC.000914 (2014).
Walker, D. A. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters 7, 015504, https://doi.org/10.1088/1748-9326/7/1/015504 (2012).
doi: 10.1088/1748-9326/7/1/015504
Epstein, H. E., Walker, D. A., Raynolds, M. K., Jia, G. J. & Kelley, A. M. Phytomass patterns across a temperature gradient of the North American arctic tundra. Journal of Geophysical Research: Biogeosciences 113, G03S02, https://doi.org/10.1029/2007JG000555 (2008).
doi: 10.1029/2007JG000555
Heim, R. J. et al. Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks. Biogeosciences 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022 (2022).
doi: 10.5194/bg-19-2729-2022
Loranty, M. M. et al. Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire. Journal of Geophysical Research: Biogeosciences 119, 2144–2154, https://doi.org/10.1002/2014JG002730 (2014).
doi: 10.1002/2014JG002730
Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120490, https://doi.org/10.1098/rstb.2012.0490 (2013).
doi: 10.1098/rstb.2012.0490
Baillargeon, N., Pold, G., Natali, S. M. & Sistla, S. A. Lowland tundra plant stoichiometry is somewhat resilient decades following fire despite substantial and sustained shifts in community structure. Arctic, Antarctic, and Alpine Research 54, 525–536, https://doi.org/10.1080/15230430.2022.2121246 (2022).
doi: 10.1080/15230430.2022.2121246
Villoslada, M. et al. Reindeer control over shrubification in subarctic wetlands: spatial analysis based on unoccupied aerial vehicle imagery. Remote Sensing in Ecology and Conservation 9, 687–706, https://doi.org/10.1002/rse2.337 (2023).
doi: 10.1002/rse2.337
Deschamps, L. et al. Increased nutrient availability speeds up permafrost development, while goose grazing slows it down in a Canadian High Arctic wetland. Journal of Ecology 111, 449–463, https://doi.org/10.1111/1365-2745.14037 (2023).
doi: 10.1111/1365-2745.14037
Shaver, G. R., Laundre, J. A., Giblin, A. E. & Nadelhoffer, K. J. Changes in Live Plant Biomass, Primary Production, and Species Composition along a Riverside Toposequence in Arctic Alaska, USA. Arctic and Alpine Research 28, 363–379, https://doi.org/10.2307/1552116 (1996).
doi: 10.2307/1552116
Walker, D. et al. Vegetation‐soil‐thaw‐depth relationships along a low‐arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes 14, 103–123, https://doi.org/10.1002/ppp.452 (2003).
doi: 10.1002/ppp.452
Epstein, H. E. et al. Spatial patterns of arctic tundra vegetation properties on different soils along the Eurasia Arctic Transect, and insights for a changing Arctic. Environmental Research Letters 16, 014008, https://doi.org/10.1088/1748-9326/abc9e3 (2020).
doi: 10.1088/1748-9326/abc9e3
Webb, E. E. et al. Variability in above- and belowground carbon stocks in a Siberian larch watershed. Biogeosciences 14, 4279–4294, https://doi.org/10.5194/bg-14-4279-2017 (2017).
doi: 10.5194/bg-14-4279-2017
Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. Journal of Geophysical Research: Biogeosciences 120, 1973–1994, https://doi.org/10.1002/2015JG002999 (2015).
doi: 10.1002/2015JG002999
Mekonnen, Z. A. et al. Topographical controls on hillslope‐scale hydrology drive shrub distributions on the Seward peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 126, e2020JG005823, https://doi.org/10.1029/2020JG005823 (2021).
doi: 10.1029/2020JG005823
Raynolds, M. K., Walker, D. A., Epstein, H. E., Pinzon, J. E. & Tucker, C. J. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters 3, 403–411, https://doi.org/10.1080/01431161.2011.609188 (2012).
doi: 10.1080/01431161.2011.609188
Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environmental Research Letters 15, 094030, https://doi.org/10.1088/1748-9326/abcc2b (2020).
doi: 10.1088/1748-9326/abcc2b
Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant aboveground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters 13, 035002, https://doi.org/10.1088/1748-9326/aaaa9a (2018).
doi: 10.1088/1748-9326/aaaa9a
Orndahl, K. M., Macander, M. J., Berner, L. T. & Goetz, S. Plant functional type aboveground biomass change within Alaska and northwest Canada mapped using a 35-year satellite time series from 1985–2020. Environmental Research Letters, 115010, https://doi.org/10.1088/1748-9326/ac9d50 (2022).
Berner, L. T. et al. Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. Forest Ecology and Management 337, 110–118, https://doi.org/10.1016/j.foreco.2014.10.027 (2015).
doi: 10.1016/j.foreco.2014.10.027
Chapin, F. S. III, Bret‐Harte, M. S., Hobbie, S. E. & Zhong, H. Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of vegetation Science 7, 347–358, https://doi.org/10.2307/3236278 (1996).
doi: 10.2307/3236278
Gilmanov, T. G. & Oechel, W. C. New estimates of organic matter reserves and net primary productivity of the North American tundra ecosystems. Journal of Biogeography, 723–741, https://doi.org/10.2307/2845975 (1995).
Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA-AK). Phytocoenologia 46, 221–229, https://doi.org/10.1127/phyto/2016/0128 (2016).
doi: 10.1127/phyto/2016/0128
Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environmental Research Letters 11, 055003, https://doi.org/10.1088/1748-9326/11/5/055003 (2016).
doi: 10.1088/1748-9326/11/5/055003
Wullschleger, S. D. et al. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany 114, 1–16, https://doi.org/10.1093/aob/mcu077 (2014).
doi: 10.1093/aob/mcu077
pubmed: 24793697
pmcid: 4071098
Sulman, B. N. et al. Integrating Arctic Plant Functional Types in a Land Surface Model Using Above- and Belowground Field Observations. Journal of Advances in Modeling Earth Systems 13, e2020MS002396, https://doi.org/10.1029/2020MS002396 (2021).
doi: 10.1029/2020MS002396
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.r-project.org/ (2021).
Pebesma, E. J. Simple features for R: standardized support for spatial vector data. The R Journal 10, 439–446, https://doi.org/10.32614/RJ-2018-009 (2018).
doi: 10.32614/RJ-2018-009
Salmon, V., Iversen, C., Breen, A., VanderStel, H. & Childs, J. NGEE Arctic Plant Traits: Plant Aboveground Biomass, NPP and Traits, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, beginning 2016. Oak Ridge National Laboratory Next Generation Ecosystem Experiments Arctic Data Collection, U.S. Department of Energy, Oak Ridge, Tennessee, USA https://doi.org/10.5440/1346199 (2019).
Walker, D. A. et al. Plant species, biomass and environmental characteristics of relevés along the North America Arctic bioclimate gradient. PANGAEA https://doi.org/10.1594/PANGAEA.837761 (2011).
Alexander, H. et al. Carbon Accumulation Patterns During Post-Fire Succession in Cajander Larch (Larix cajanderi) Forests of Siberia. Ecosystems 15, 1065–1082, https://doi.org/10.1007/s10021-012-9567-6 (2012).
doi: 10.1007/s10021-012-9567-6
Gregory, F. M. Biophysical remote sensing and terrestrial CO2 exchange at Cape Bounty, Melville Island. 175 (Queen’s University, 2012).
Allen, J. L. & Lendemer, J. C. A call to reconceptualize lichen symbioses. Trends in Ecology & Evolution https://doi.org/10.1016/j.tree.2022.03.004 (2022).
Gaspard, A. & Boudreau, S. Plant biomass measurements from field sites in the Nunavik region of northern Quebec, Canada. Université Laval Department of Biology (2021).
Berner, L. T. et al. The Arctic Plant Aboveground Biomass Synthesis Dataset, Pan-Arctic, 1998-2022. Arctic Data Center https://doi.org/10.18739/A2RR1PP3N (2024).
Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create Interactive Web Maps with the JavaScript ‘Leaflet’ Library. R package version 2.1.1. https://CRAN.R-project.org/package=leaflet (2022).
Wielgolaski, F. Vegetation types and plant biomass in tundra. Arctic and Alpine Research 4, 291–305, https://doi.org/10.1080/00040851.1972.12003650 (1972).
doi: 10.1080/00040851.1972.12003650
Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, Bernard Saugier, & Harold A Mooney) Ch. 23, 543–557 (Academic Press, 2001).
Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences 106, 11635–11640, https://doi.org/10.1073/pnas.0901970106 (2009).
doi: 10.1073/pnas.0901970106
Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. International Journal of Applied Earth Observation and Geoinformation 27, 4–12, https://doi.org/10.1016/j.jag.2013.05.010 (2014).
doi: 10.1016/j.jag.2013.05.010
Ludwig, S. M., Schiferl, L., Hung, J., Natali, S. M. & Commane, R. Resolving heterogeneous fluxes from tundra halves the growing season carbon budget. Biogeosciences Discuss. 2023, 1–30, https://doi.org/10.5194/bg-2023-119 (2023).
doi: 10.5194/bg-2023-119
Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution 2, 1443–1448, https://doi.org/10.1038/s41559-018-0612-5 (2018).
doi: 10.1038/s41559-018-0612-5
Virkkala, A.-M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environmental Research Letters 14, 124061, https://doi.org/10.1088/1748-9326/ab4291 (2019).
doi: 10.1088/1748-9326/ab4291
López-Blanco, E. et al. Towards an increasingly biased view on Arctic change. Nature Climate Change https://doi.org/10.1038/s41558-023-01903-1 (2024).
doi: 10.1038/s41558-023-01903-1
Gauthier, G., Hughes, R. J., Reed, A., Beaulieu, J. & Rochefort, L. Effect of grazing by greater snow geese on the production of graminoids at an arctic site (Bylot Island, NWT, Canada). Journal of Ecology 83, 653–664 (1995).
doi: 10.2307/2261633
Riedel, S. M. et al. Spatial and temporal heterogeneity of vegetation properties among four tundra plant communities at Ivotuk, Alaska, USA. Arctic, Antarctic, and Alpine Research 37, 25–33 (2005).
doi: 10.1657/1523-0430(2005)037[0025:SATHOV]2.0.CO;2
Happonen, K., Virkkala, A.-M., Kemppinen, J., Niittynen, P. & Luoto, M. Relationships between above-ground plant traits and carbon cycling in tundra plant communities. Journal of Ecology 110, 700–716, https://doi.org/10.1111/1365-2745.13832 (2022).
doi: 10.1111/1365-2745.13832
Shevtsova, I. et al. Ground layer above-ground biomass of 25 sites central Lena Delta from 2018 - Raw data of dry weight for each sub-ground vegetation type sampling plot. PANGAEA https://doi.org/10.1594/PANGAEA.956067 (2023).
Kruse, S. et al. Ground layer above-ground biomass of 20 sites of Yakutia from 2018 - Raw data of fresh weight and dry weight for each sub-ground vegetation type sampling plot. PANGAEA https://doi.org/10.1594/PANGAEA.954524 (2023).
Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data 7, 1–22, https://doi.org/10.1038/s41597-020-0444-4 (2020).
doi: 10.1038/s41597-020-0444-4
Fisher, J. B. et al. Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters 13, 020202, https://doi.org/10.1088/1748-9326/aa9d9a (2018).
doi: 10.1088/1748-9326/aa9d9a
Yu, Q., Epstein, H., Engstrom, R. & Walker, D. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Global Change Biology 23, 3895–3907, https://doi.org/10.1111/gcb.13632 (2017).
doi: 10.1111/gcb.13632
pubmed: 28276177
Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8. 5 climate trajectory. Environmental Research Letters 13, 054029, https://doi.org/10.1088/1748-9326/aabf28 (2018).
doi: 10.1088/1748-9326/aabf28
Legagneux, P. et al. Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nature Climate Change 4, 379–383, https://doi.org/10.1038/nclimate2168 (2014).
doi: 10.1038/nclimate2168
Berner, L. The Arctic Plant Aboveground Biomass Synthesis Dataset Scripts (v1.0). Zenodo https://doi.org/10.5281/zenodo.10672197 (2024).
Danby, R., Hik, D. S. & Koh, S. Plant biomass measurements from field sites in the Kluane region of southwest Yukon, Canada. Queens University School of Environmental Studies (2008).
Gignac, C. et al. N/P addition is more likely than N addition alone to promote a transition from moss-dominated to graminoid-dominated tundra in the High-Arctic. Atmosphere 13, 676, https://doi.org/10.3390/atmos13050676 (2022).
doi: 10.3390/atmos13050676
Hayne, S. L. Controls on atmospheric exchanges of carbon dioxide and methane for a variety of Arctic tundra types. (Carleton University Department of Geography and Environmental Studies, 2010).
Lafleur, P. M. & Humphreys, E. R. Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Global Change Biology 14, 740–756, https://doi.org/10.1111/j.1365-2486.2007.01529.x (2008).
doi: 10.1111/j.1365-2486.2007.01529.x
Lafleur, P. M. & Humphreys, E. R. Tundra shrub effects on growing season energy and carbon dioxide exchange. Environmental Research Letters 13, 055001, https://doi.org/10.1088/1748-9326/aab863 (2018).
doi: 10.1088/1748-9326/aab863
Skaarup, E. The impacts of shrub abundance on microclimate and decomposition in the Canadian Low Arctic. (Carleton University Department of Geography and Environmental Studies, 2017).
Vankoughnett, M. R. & Grogan, P. Plant production and nitrogen accumulation above- and belowground in low and tall birch tundra communities: the influence of snow and litter. Plant and Soil 408, 195–210, https://doi.org/10.1007/s11104-016-2921-2 (2016).
doi: 10.1007/s11104-016-2921-2
Orndahl, K. M. Mapping tundra ecosystem plant functional type cover, height and aboveground biomass in Alaska and northwest Canada using unmanned aerial vehicles, 2018-2019. Arctic Data Center https://doi.org/10.18739/A2R785Q5B (2022).
Berner, L. T., Orndahl, K. M. & Burns, P. J. Plant aboveground biomass by functional group for alpine tundra and mountain birch woodlands in northern Finland, 2022. Arctic Data Center https://doi.org/10.18739/A2QV3C526 (2023).
Arndal, M. F. et al. Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arctic, Antarctic, and Alpine Research 41, 164–173, https://doi.org/10.1657/1938-4246-41.2.164 (2009).
doi: 10.1657/1938-4246-41.2.164
Heard, K., Natali, S., Bunn, A. & Alexander, H. D. Northeast Siberia Plant and Soil Data: Plant Composition and Cover, Plant and Soil Carbon Pools, and Thaw Depth. Arctic Data Center https://doi.org/10.5065/D6NG4NP0 (2016).
Loranty, M. M. & Natali, S. Plant biomass measurements from field sites in the Kolyma region of northeastern Sakha, Russia. Colgate University Department of Geography (2014).
Mikola, J. et al. Data from: Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data. Dryad https://doi.org/10.5061/dryad.8382j4r (2019).
Bret-Harte, M., Mack, M. & Shaver, G. Above ground plant and below ground stem biomass of samples from the unburned control site near the Anaktuvuk River fire scar. ver 5. Environmental Data Initiative https://doi.org/10.6073/pasta/18fcdcaf43451b70610d55da6475b397 (2020).
Bret-Harte, M., Mack, M. & Shaver, G. Above ground plant and below ground stem biomass of samples from the moderately burned site at Anaktuvuk River, Alaska ver 4. Environmental Data Initiative https://doi.org/10.6073/pasta/6646ac57a7397b9c8d1a2dc3c95a566c (2020).
Bret-Harte, M., Mack, M. & Shaver, G. Above ground plant and below ground stem biomass of samples from the severely burned site of the Anaktuvuk River fire, Alaska ver 5. Environmental Data Initiative https://doi.org/10.6073/pasta/7f609c982e2e6880f63bab4c3bd5af8d (2020).
Greaves, H. E. et al. High-Resolution Shrub Biomass and Uncertainty Maps, Toolik Lake Area, Alaska, 2013. ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1573 (2018).
Hung, J. et al. Polaris Project 2019: Vegetation biomass, point intercept, and thaw depth, Yukon-Kuskokwim Delta, Alaska. Arctic Data Center https://doi.org/10.18739/A2JS9H89M (2022).
Ludwig, S., Holmes, R. M., Natali, S., Schade, J. & Mann, P. Yukon-Kuskokwim Delta fire: vegetation biomass, Yukon-Kuskokwim Delta Alaska, 2016. Arctic Data Center https://doi.org/10.18739/A29S1KK6T (2018).
doi: 10.18739/A29S1KK6T
Natali, S., Kholodov, A. & Loranty, M. Collaborative Research: Vegetation And Ecosystem Impacts On Permafrost Vulnerability. Arctic Data Center https://doi.org/10.18739/A2F76677W (2014).
Raynolds, M. K. Arctic Vegetation Plots ATLAS Project North Slope and Seward Peninsula, AK, 1998-2000. ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1541 (2018).
Walker, D. A. et al. The Circumpolar Arctic vegetation map. Journal of Vegetation Science 16, 267–282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x (2005).
doi: 10.1111/j.1654-1103.2005.tb02365.x
Virtanen, R. et al. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome. Ecology and Evolution 6, 143–158, https://doi.org/10.1002/ece3.1837 (2016).
doi: 10.1002/ece3.1837
pubmed: 26811780
Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 (2001).
doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122, https://doi.org/10.1038/sdata.2017.122 (2017).
doi: 10.1038/sdata.2017.122
pubmed: 28872642
pmcid: 5584396
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. EnviDat https://doi.org/10.16904/envidat.228.v2.1 (2021).