Disease-associated astrocyte epigenetic memory promotes CNS pathology.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
20 Mar 2024
20 Mar 2024
Historique:
received:
02
08
2023
accepted:
09
02
2024
medline:
21
3
2024
pubmed:
21
3
2024
entrez:
21
3
2024
Statut:
aheadofprint
Résumé
Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis
Identifiants
pubmed: 38509377
doi: 10.1038/s41586-024-07187-5
pii: 10.1038/s41586-024-07187-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).
pubmed: 27158906
pmcid: 4899206
doi: 10.1038/nm.4106
Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).
pubmed: 32051591
pmcid: 8049843
doi: 10.1038/s41586-020-1999-0
Sanmarco, L. M. et al. Gut-licensed IFNγ
pubmed: 33408417
pmcid: 8039910
doi: 10.1038/s41586-020-03116-4
Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596.e518 (2019).
pubmed: 30661753
pmcid: 6440749
doi: 10.1016/j.cell.2018.12.012
Wheeler, M. A. et al. Droplet-based forward genetic screening of astrocyte-microglia cross-talk. Science 379, 1023–1030 (2023).
pubmed: 36893254
pmcid: 10066924
doi: 10.1126/science.abq4822
Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).
pubmed: 33888612
pmcid: 8157482
doi: 10.1126/science.abf1230
Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).
pubmed: 29769726
pmcid: 6422159
doi: 10.1038/s41586-018-0119-x
Chao, C. C. et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179, 1483–1498.e1422 (2019).
pubmed: 31813625
pmcid: 6936326
doi: 10.1016/j.cell.2019.11.016
Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).
pubmed: 30309945
pmcid: 6292669
doi: 10.1126/science.aat0473
Lee, H. G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339–358 (2022).
pubmed: 35173313
pmcid: 9081171
doi: 10.1038/s41573-022-00390-x
Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).
pubmed: 25891508
pmcid: 5253239
doi: 10.1038/nrn3898
Yu, X. & Khakh, B. S. SnapShot: astrocyte interactions. Cell 185, 220–220.e221 (2022).
pubmed: 34995516
doi: 10.1016/j.cell.2021.09.029
Lee, H. G., Lee, J. H., Flausino, L. E. & Quintana, F. J. Neuroinflammation: an astrocyte perspective. Sci. Transl. Med. 15, eadi7828 (2023).
pubmed: 37939162
doi: 10.1126/scitranslmed.adi7828
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
pubmed: 28099414
pmcid: 5404890
doi: 10.1038/nature21029
Endo, F. et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 378, eadc9020 (2022).
pubmed: 36378959
pmcid: 9873482
doi: 10.1126/science.adc9020
Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Nerosci. 23, 701–706 (2020).
doi: 10.1038/s41593-020-0624-8
Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).
pubmed: 8717518
doi: 10.1146/annurev.immunol.14.1.333
Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).
pubmed: 29643512
pmcid: 6038912
doi: 10.1038/s41586-018-0023-4
Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).
pubmed: 25258085
pmcid: 4242194
doi: 10.1126/science.1251086
Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).
pubmed: 19136945
pmcid: 2674434
doi: 10.1038/nature07665
Serafini, N. et al. Trained ILC3 responses promote intestinal defense. Science 375, 859–863 (2022).
pubmed: 35201883
pmcid: 10351749
doi: 10.1126/science.aaz8777
Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).
pubmed: 32132681
pmcid: 7186935
doi: 10.1038/s41577-020-0285-6
Perkins, N. D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997).
pubmed: 8999795
doi: 10.1126/science.275.5299.523
Zhao, J., Li, X., Guo, M., Yu, J. & Yan, C. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics 17, 335 (2016).
pubmed: 27146783
pmcid: 4857411
doi: 10.1186/s12864-016-2664-8
Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).
pubmed: 29515192
doi: 10.1038/nrn.2018.19
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).
pubmed: 26039447
doi: 10.1016/j.cmet.2015.05.014
Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).
pubmed: 19461003
pmcid: 2746744
doi: 10.1126/science.1164097
Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).
pubmed: 25216636
pmcid: 4255949
doi: 10.1038/nm.3681
Clark, I. C. et al. Identification of astrocyte regulators by nucleic acid cytometry. Nature 614, 326–333 (2023).
pubmed: 36599367
pmcid: 9980163
doi: 10.1038/s41586-022-05613-0
Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).
pubmed: 34497421
pmcid: 8719282
doi: 10.1038/s41586-021-03892-7
Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).
pubmed: 31316211
pmcid: 6731122
doi: 10.1038/s41586-019-1404-z
Cheong, J. G. et al. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 186, 3882–3902.e3824 (2023).
pubmed: 37597510
doi: 10.1016/j.cell.2023.07.019
Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e1617 (2018).
pubmed: 30433869
doi: 10.1016/j.cell.2018.09.042
McCarthy, G. F. & Leblond, C. P. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with
pubmed: 3385018
doi: 10.1002/cne.902710409
Chierzi, S. et al. Astrocytes transplanted during early postnatal development integrate, mature, and survive long term in mouse cortex. J. Neurosci. 43, 1509–1529 (2023).
pubmed: 36669885
pmcid: 10008063
doi: 10.1523/JNEUROSCI.0544-22.2023
Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).
pubmed: 8945521
doi: 10.1016/S0092-8674(00)82001-2
Li, Q., Xiao, H. & Isobe, K. Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J. Gerontol. A 57, B93–B98 (2002).
doi: 10.1093/gerona/57.3.B93
Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).
pubmed: 30867594
pmcid: 6557285
doi: 10.1038/s41586-019-1024-7
Lepack, A. E. et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 368, 197–201 (2020).
pubmed: 32273471
pmcid: 7228137
doi: 10.1126/science.aaw8806
Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).
pubmed: 28562591
pmcid: 5505514
doi: 10.1038/nature22405
Sen, P. et al. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol. Cell 73, 684–698.e688 (2019).
pubmed: 30773298
pmcid: 6688479
doi: 10.1016/j.molcel.2019.01.021
Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).
pubmed: 31806905
pmcid: 7147972
doi: 10.1038/s41591-019-0675-0
Li, T. Y. et al. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat Aging 1, 165–178 (2021).
pubmed: 33718883
pmcid: 7116894
doi: 10.1038/s43587-020-00025-z
Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557–564 (2022).
pubmed: 35614216
pmcid: 10027402
doi: 10.1038/s41586-022-04739-5
Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).
doi: 10.1126/science.1062374
Long, L. et al. CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature 600, 308–313 (2021).
pubmed: 34795452
pmcid: 8887674
doi: 10.1038/s41586-021-04109-7
Beigneux, A. P. et al. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem. 279, 9557–9564 (2004).
pubmed: 14662765
doi: 10.1074/jbc.M310512200
Hochrein, S. M. et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34, 516–532.e511 (2022).
pubmed: 35316657
pmcid: 9019065
doi: 10.1016/j.cmet.2022.02.015
Balmer, M. L. et al. Memory CD8
pubmed: 27212436
doi: 10.1016/j.immuni.2016.03.016
Lauterbach, M. A. et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51, 997–1011.e1017 (2019).
pubmed: 31851905
doi: 10.1016/j.immuni.2019.11.009
Sardar, D. et al. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 380, eade0027 (2023).
pubmed: 37319217
pmcid: 10874521
doi: 10.1126/science.ade0027
Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).
pubmed: 32612232
pmcid: 7610345
doi: 10.1038/s41586-020-2424-4
Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).
pubmed: 16226706
doi: 10.1016/j.ccr.2005.09.008
Verschueren, K. H. G. et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568, 571–575 (2019).
pubmed: 30944476
doi: 10.1038/s41586-019-1095-5
Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019).
pubmed: 30944472
doi: 10.1038/s41586-019-1094-6
Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).
pubmed: 15494728
doi: 10.1038/nn1340
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653
doi: 10.1038/nn.2467
Everhart, M. B. et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).
pubmed: 16585596
doi: 10.4049/jimmunol.176.8.4995
Gutierrez-Vazquez, C. & Quintana, F. J. Protocol for in vitro analysis of pro-inflammatory and metabolic functions of cultured primary murine astrocytes. STAR Protoc. 3, 101033 (2022).
pubmed: 34977679
doi: 10.1016/j.xpro.2021.101033
Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).
pubmed: 29275977
doi: 10.1016/S1474-4422(17)30470-2
Dhaeze, T. et al. CD70 defines a subset of proinflammatory and CNS-pathogenic T
pubmed: 30635649
pmcid: 6804668
doi: 10.1038/s41423-018-0198-5
Broux, B. et al. Interleukin-26, preferentially produced by TH17 lymphocytes, regulates CNS barrier function. Neurol. Neuroimmunol. Neuroinflamm. 7, e870 (2020).
pubmed: 32788322
pmcid: 7428369
doi: 10.1212/NXI.0000000000000870
Illouz, T., Madar, R., Hirsh, T., Biragyn, A. & Okun, E. Induction of an effective anti-amyloid-β humoral response in aged mice. Vaccine 39, 4817–4829 (2021).
pubmed: 34294479
pmcid: 9237638
doi: 10.1016/j.vaccine.2021.07.023
Illouz, T. et al. Maternal antibodies facilitate amyloid-β clearance by activating Fc-receptor–Syk-mediated phagocytosis. Commun. Biol. 4, 329 (2021).
pubmed: 33712740
pmcid: 7955073
doi: 10.1038/s42003-021-01851-6
Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7, 123 (2006).
pubmed: 16526949
pmcid: 1472692
doi: 10.1186/1471-2105-7-123
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903
pmcid: 4486245
doi: 10.1038/nmeth.3047
Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).
pubmed: 25748654
pmcid: 4380877
doi: 10.1016/j.cell.2015.02.038
Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).
pubmed: 18240313
doi: 10.1002/glia.20622
Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903.e815 (2017).
pubmed: 28162770
pmcid: 5445660
doi: 10.1016/j.cell.2017.01.013
Foo, L. C. Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb. Protoc. 2013, 421–432 (2013).
pubmed: 23637363
doi: 10.1101/pdb.err080101
Lemaitre, F. et al. Capturing T lymphocytes’ dynamic interactions with human neural cells using time-lapse microscopy. Front. Immunol. 12, 668483 (2021).
pubmed: 33968073
pmcid: 8100528
doi: 10.3389/fimmu.2021.668483
Durafourt, B. A., Moore, C. S., Blain, M. & Antel, J. P. Isolating, culturing, and polarizing primary human adult and fetal microglia. Methods Mol. Biol. 1041, 199–211 (2013).
pubmed: 23813381
doi: 10.1007/978-1-62703-520-0_19
Kieran, N. W. et al. MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. J. Neuroinflammation 19, 10 (2022).
pubmed: 34991629
pmcid: 8740343
doi: 10.1186/s12974-021-02373-y
van Galen, P. et al. A multiplexed system for quantitative comparisons of chromatin landscapes. Mol. Cell 61, 170–180 (2016).
pubmed: 26687680
doi: 10.1016/j.molcel.2015.11.003
Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
Trombetta, J. J. et al. Preparation of single-cell RNA-seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 107, 4.22.1–4.22.17 (2014).
pubmed: 24984854
doi: 10.1002/0471142727.mb0422s107
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
pubmed: 25697820
pmcid: 4765878
doi: 10.1093/bioinformatics/btv098
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–191 (2014).
pubmed: 24799436
pmcid: 4086134
doi: 10.1093/nar/gku365
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
doi: 10.1038/nmeth.2688
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).
doi: 10.1002/0471142727.mb2129s109
Clark, I. C., Thakur, R. & Abate, A. R. Concentric electrodes improve microfluidic droplet sorting. Lab Chip 18, 710–713 (2018).
pubmed: 29383336
pmcid: 6105269
doi: 10.1039/C7LC01242J
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457
doi: 10.1038/ng1180