Disease-associated astrocyte epigenetic memory promotes CNS pathology.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
20 Mar 2024
Historique:
received: 02 08 2023
accepted: 09 02 2024
medline: 21 3 2024
pubmed: 21 3 2024
entrez: 21 3 2024
Statut: aheadofprint

Résumé

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis

Identifiants

pubmed: 38509377
doi: 10.1038/s41586-024-07187-5
pii: 10.1038/s41586-024-07187-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).
pubmed: 27158906 pmcid: 4899206 doi: 10.1038/nm.4106
Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).
pubmed: 32051591 pmcid: 8049843 doi: 10.1038/s41586-020-1999-0
Sanmarco, L. M. et al. Gut-licensed IFNγ
pubmed: 33408417 pmcid: 8039910 doi: 10.1038/s41586-020-03116-4
Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596.e518 (2019).
pubmed: 30661753 pmcid: 6440749 doi: 10.1016/j.cell.2018.12.012
Wheeler, M. A. et al. Droplet-based forward genetic screening of astrocyte-microglia cross-talk. Science 379, 1023–1030 (2023).
pubmed: 36893254 pmcid: 10066924 doi: 10.1126/science.abq4822
Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).
pubmed: 33888612 pmcid: 8157482 doi: 10.1126/science.abf1230
Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).
pubmed: 29769726 pmcid: 6422159 doi: 10.1038/s41586-018-0119-x
Chao, C. C. et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179, 1483–1498.e1422 (2019).
pubmed: 31813625 pmcid: 6936326 doi: 10.1016/j.cell.2019.11.016
Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).
pubmed: 30309945 pmcid: 6292669 doi: 10.1126/science.aat0473
Lee, H. G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339–358 (2022).
pubmed: 35173313 pmcid: 9081171 doi: 10.1038/s41573-022-00390-x
Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).
pubmed: 25891508 pmcid: 5253239 doi: 10.1038/nrn3898
Yu, X. & Khakh, B. S. SnapShot: astrocyte interactions. Cell 185, 220–220.e221 (2022).
pubmed: 34995516 doi: 10.1016/j.cell.2021.09.029
Lee, H. G., Lee, J. H., Flausino, L. E. & Quintana, F. J. Neuroinflammation: an astrocyte perspective. Sci. Transl. Med. 15, eadi7828 (2023).
pubmed: 37939162 doi: 10.1126/scitranslmed.adi7828
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
pubmed: 28099414 pmcid: 5404890 doi: 10.1038/nature21029
Endo, F. et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 378, eadc9020 (2022).
pubmed: 36378959 pmcid: 9873482 doi: 10.1126/science.adc9020
Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Nerosci. 23, 701–706 (2020).
doi: 10.1038/s41593-020-0624-8
Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).
pubmed: 8717518 doi: 10.1146/annurev.immunol.14.1.333
Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).
pubmed: 29643512 pmcid: 6038912 doi: 10.1038/s41586-018-0023-4
Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).
pubmed: 25258085 pmcid: 4242194 doi: 10.1126/science.1251086
Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).
pubmed: 19136945 pmcid: 2674434 doi: 10.1038/nature07665
Serafini, N. et al. Trained ILC3 responses promote intestinal defense. Science 375, 859–863 (2022).
pubmed: 35201883 pmcid: 10351749 doi: 10.1126/science.aaz8777
Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).
pubmed: 32132681 pmcid: 7186935 doi: 10.1038/s41577-020-0285-6
Perkins, N. D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997).
pubmed: 8999795 doi: 10.1126/science.275.5299.523
Zhao, J., Li, X., Guo, M., Yu, J. & Yan, C. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics 17, 335 (2016).
pubmed: 27146783 pmcid: 4857411 doi: 10.1186/s12864-016-2664-8
Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).
pubmed: 29515192 doi: 10.1038/nrn.2018.19
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).
pubmed: 26039447 doi: 10.1016/j.cmet.2015.05.014
Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).
pubmed: 19461003 pmcid: 2746744 doi: 10.1126/science.1164097
Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).
pubmed: 25216636 pmcid: 4255949 doi: 10.1038/nm.3681
Clark, I. C. et al. Identification of astrocyte regulators by nucleic acid cytometry. Nature 614, 326–333 (2023).
pubmed: 36599367 pmcid: 9980163 doi: 10.1038/s41586-022-05613-0
Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).
pubmed: 34497421 pmcid: 8719282 doi: 10.1038/s41586-021-03892-7
Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).
pubmed: 31316211 pmcid: 6731122 doi: 10.1038/s41586-019-1404-z
Cheong, J. G. et al. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 186, 3882–3902.e3824 (2023).
pubmed: 37597510 doi: 10.1016/j.cell.2023.07.019
Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e1617 (2018).
pubmed: 30433869 doi: 10.1016/j.cell.2018.09.042
McCarthy, G. F. & Leblond, C. P. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with
pubmed: 3385018 doi: 10.1002/cne.902710409
Chierzi, S. et al. Astrocytes transplanted during early postnatal development integrate, mature, and survive long term in mouse cortex. J. Neurosci. 43, 1509–1529 (2023).
pubmed: 36669885 pmcid: 10008063 doi: 10.1523/JNEUROSCI.0544-22.2023
Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).
pubmed: 8945521 doi: 10.1016/S0092-8674(00)82001-2
Li, Q., Xiao, H. & Isobe, K. Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J. Gerontol. A 57, B93–B98 (2002).
doi: 10.1093/gerona/57.3.B93
Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).
pubmed: 30867594 pmcid: 6557285 doi: 10.1038/s41586-019-1024-7
Lepack, A. E. et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 368, 197–201 (2020).
pubmed: 32273471 pmcid: 7228137 doi: 10.1126/science.aaw8806
Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).
pubmed: 28562591 pmcid: 5505514 doi: 10.1038/nature22405
Sen, P. et al. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol. Cell 73, 684–698.e688 (2019).
pubmed: 30773298 pmcid: 6688479 doi: 10.1016/j.molcel.2019.01.021
Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).
pubmed: 31806905 pmcid: 7147972 doi: 10.1038/s41591-019-0675-0
Li, T. Y. et al. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat Aging 1, 165–178 (2021).
pubmed: 33718883 pmcid: 7116894 doi: 10.1038/s43587-020-00025-z
Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557–564 (2022).
pubmed: 35614216 pmcid: 10027402 doi: 10.1038/s41586-022-04739-5
Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).
doi: 10.1126/science.1062374
Long, L. et al. CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature 600, 308–313 (2021).
pubmed: 34795452 pmcid: 8887674 doi: 10.1038/s41586-021-04109-7
Beigneux, A. P. et al. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem. 279, 9557–9564 (2004).
pubmed: 14662765 doi: 10.1074/jbc.M310512200
Hochrein, S. M. et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34, 516–532.e511 (2022).
pubmed: 35316657 pmcid: 9019065 doi: 10.1016/j.cmet.2022.02.015
Balmer, M. L. et al. Memory CD8
pubmed: 27212436 doi: 10.1016/j.immuni.2016.03.016
Lauterbach, M. A. et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51, 997–1011.e1017 (2019).
pubmed: 31851905 doi: 10.1016/j.immuni.2019.11.009
Sardar, D. et al. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 380, eade0027 (2023).
pubmed: 37319217 pmcid: 10874521 doi: 10.1126/science.ade0027
Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).
pubmed: 32612232 pmcid: 7610345 doi: 10.1038/s41586-020-2424-4
Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).
pubmed: 16226706 doi: 10.1016/j.ccr.2005.09.008
Verschueren, K. H. G. et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568, 571–575 (2019).
pubmed: 30944476 doi: 10.1038/s41586-019-1095-5
Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019).
pubmed: 30944472 doi: 10.1038/s41586-019-1094-6
Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).
pubmed: 15494728 doi: 10.1038/nn1340
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653 doi: 10.1038/nn.2467
Everhart, M. B. et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).
pubmed: 16585596 doi: 10.4049/jimmunol.176.8.4995
Gutierrez-Vazquez, C. & Quintana, F. J. Protocol for in vitro analysis of pro-inflammatory and metabolic functions of cultured primary murine astrocytes. STAR Protoc. 3, 101033 (2022).
pubmed: 34977679 doi: 10.1016/j.xpro.2021.101033
Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).
pubmed: 29275977 doi: 10.1016/S1474-4422(17)30470-2
Dhaeze, T. et al. CD70 defines a subset of proinflammatory and CNS-pathogenic T
pubmed: 30635649 pmcid: 6804668 doi: 10.1038/s41423-018-0198-5
Broux, B. et al. Interleukin-26, preferentially produced by TH17 lymphocytes, regulates CNS barrier function. Neurol. Neuroimmunol. Neuroinflamm. 7, e870 (2020).
pubmed: 32788322 pmcid: 7428369 doi: 10.1212/NXI.0000000000000870
Illouz, T., Madar, R., Hirsh, T., Biragyn, A. & Okun, E. Induction of an effective anti-amyloid-β humoral response in aged mice. Vaccine 39, 4817–4829 (2021).
pubmed: 34294479 pmcid: 9237638 doi: 10.1016/j.vaccine.2021.07.023
Illouz, T. et al. Maternal antibodies facilitate amyloid-β clearance by activating Fc-receptor–Syk-mediated phagocytosis. Commun. Biol. 4, 329 (2021).
pubmed: 33712740 pmcid: 7955073 doi: 10.1038/s42003-021-01851-6
Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7, 123 (2006).
pubmed: 16526949 pmcid: 1472692 doi: 10.1186/1471-2105-7-123
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).
pubmed: 25748654 pmcid: 4380877 doi: 10.1016/j.cell.2015.02.038
Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).
pubmed: 18240313 doi: 10.1002/glia.20622
Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903.e815 (2017).
pubmed: 28162770 pmcid: 5445660 doi: 10.1016/j.cell.2017.01.013
Foo, L. C. Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb. Protoc. 2013, 421–432 (2013).
pubmed: 23637363 doi: 10.1101/pdb.err080101
Lemaitre, F. et al. Capturing T lymphocytes’ dynamic interactions with human neural cells using time-lapse microscopy. Front. Immunol. 12, 668483 (2021).
pubmed: 33968073 pmcid: 8100528 doi: 10.3389/fimmu.2021.668483
Durafourt, B. A., Moore, C. S., Blain, M. & Antel, J. P. Isolating, culturing, and polarizing primary human adult and fetal microglia. Methods Mol. Biol. 1041, 199–211 (2013).
pubmed: 23813381 doi: 10.1007/978-1-62703-520-0_19
Kieran, N. W. et al. MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. J. Neuroinflammation 19, 10 (2022).
pubmed: 34991629 pmcid: 8740343 doi: 10.1186/s12974-021-02373-y
van Galen, P. et al. A multiplexed system for quantitative comparisons of chromatin landscapes. Mol. Cell 61, 170–180 (2016).
pubmed: 26687680 doi: 10.1016/j.molcel.2015.11.003
Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
Trombetta, J. J. et al. Preparation of single-cell RNA-seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 107, 4.22.1–4.22.17 (2014).
pubmed: 24984854 doi: 10.1002/0471142727.mb0422s107
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
pubmed: 25697820 pmcid: 4765878 doi: 10.1093/bioinformatics/btv098
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).
doi: 10.1002/0471142727.mb2129s109
Clark, I. C., Thakur, R. & Abate, A. R. Concentric electrodes improve microfluidic droplet sorting. Lab Chip 18, 710–713 (2018).
pubmed: 29383336 pmcid: 6105269 doi: 10.1039/C7LC01242J
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457 doi: 10.1038/ng1180

Auteurs

Hong-Gyun Lee (HG)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Joseph M Rone (JM)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Zhaorong Li (Z)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Camilo Faust Akl (CF)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Seung Won Shin (SW)

Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA.

Joon-Hyuk Lee (JH)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Lucas E Flausino (LE)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Florian Pernin (F)

Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.

Chun-Cheih Chao (CC)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Kilian L Kleemann (KL)

School of Computing, University of Portsmouth, Portsmouth, UK.

Lena Srun (L)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Tomer Illouz (T)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Federico Giovannoni (F)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Marc Charabati (M)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Liliana M Sanmarco (LM)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Jessica E Kenison (JE)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Gavin Piester (G)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.

Stephanie E J Zandee (SEJ)

Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.

Jack P Antel (JP)

Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.

Veit Rothhammer (V)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.

Michael A Wheeler (MA)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Alexandre Prat (A)

Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.

Iain C Clark (IC)

Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA.

Francisco J Quintana (FJ)

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. fquintana@rics.bwh.harvard.edu.
Broad Institute of MIT and Harvard, Cambridge, MA, USA. fquintana@rics.bwh.harvard.edu.
Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA. fquintana@rics.bwh.harvard.edu.

Classifications MeSH