MR compatible detectors assessment for a 0.35 T MR-linac commissioning.

Air gap Commissioning Detectors Diodes MR-linac Magnetic field Microdiamond Output factors Small fields

Journal

Radiation oncology (London, England)
ISSN: 1748-717X
Titre abrégé: Radiat Oncol
Pays: England
ID NLM: 101265111

Informations de publication

Date de publication:
20 Mar 2024
Historique:
received: 20 10 2023
accepted: 11 03 2024
medline: 21 3 2024
pubmed: 21 3 2024
entrez: 21 3 2024
Statut: epublish

Résumé

To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.

Identifiants

pubmed: 38509543
doi: 10.1186/s13014-024-02431-8
pii: 10.1186/s13014-024-02431-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

40

Informations de copyright

© 2024. The Author(s).

Références

Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.
pubmed: 31341983 pmcid: 6630153
Kawrakow I, Fippel M. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol. 2000;45(8):2163–83. https://doi.org/10.1088/0031-9155/45/8/308 .
pubmed: 10958187
Van Asselen B, Woodings SJ, Hackett SL, van Soest TL, Kok JGM, Raaymakers BW, et al. A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Phys Med Biol. 2018;63(12):125008.
pubmed: 29786612
Roberts DA, Sandin C, Vesanen PT, Lee H, Hanson IM, Nill S, et al. Machine QA for the Elekta Unity system: a report from the Elekta MR-linac consortium. Med Phys. 2021;48(5):e67–85.
pubmed: 33577091
Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008;53(4):909–23.
pubmed: 18263948
Tanadini-Lang S, Budgell G, Bohoudi O, Corradini S, Cusumano D, Güngör G, et al. An ESTRO-ACROP guideline on quality assurance and medical physics commissioning of online MRI guided radiotherapy systems based on a consensus expert opinion. Radiother Oncol. 2023;181:109504.
pubmed: 36736592
Hackett SL, van Asselen B, Wolthaus JW, Kok JG, Woodings SJ, Lagendijk JJ, et al. Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR-linac? Med Phys. 2016;43(7):3961.
pubmed: 27370114
O’Brien DJ, Sawakuchi GO. Monte Carlo study of the chamber-phantom air gap effect in a magnetic field. Med Phys. 2017;44(7):3830–8.
pubmed: 28432792 pmcid: 5503156
Margaroni V, Pappas EP, Episkopakis A, Pantelis E, Papagiannis P, Marinos N, et al. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect. Med Phys. 2023;50(2):1132–48.
pubmed: 36349535
Krauss A, Spindeldreier CK, Klüter S. Direct determination of kB, Q, Q0 for cylindrical ionization chambers in a 6 MV 0.35 T MR-linac. Phys Med Biol. 2020;65(23):235049.
pubmed: 33300501
Pojtinger S, Dohm OS, Kapsch RP, Thorwarth D. Ionization chamber correction factors for MR-linacs. Phys Med Biol. 2018;63(11):11NT03.
pubmed: 29762130
O’Brien DJ, Roberts DA, Ibbott GS, Sawakuchi GO. Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Med Phys. 2016;43(8):4915.
pubmed: 27487908
O’Brien DJ, Dolan J, Pencea S, Schupp N, Sawakuchi GO. Relative dosimetry with an MR-linac: response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements. Med Phys. 2018;45(2):884–97.
pubmed: 29178457
Blum I, Tekin T, Delfs B, Schönfeld AB, Kapsch RP, Poppe B, et al. The dose response of PTW microDiamond and microSilicon in transverse magnetic field under small field conditions. Phys Med Biol. 2021;66(15):155003.
Woodings SJ, Wolthaus JWH, van Asselen B, de Vries JHW, Kok JGM, Lagendijk JJW, et al. Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac. Phys Med Biol. 2018;63(5):0504.
Chen X, Paulson ES, Ahunbay E, Sanli A, Klawikowski S, Li XA. Measurement validation of treatment planning for a MR-Linac. J Appl Clin Med Phys. 2019;20(7):28–38.
pubmed: 31254376 pmcid: 6612768
Lim SB, Tyagi N, Subashi E, Liang J, Chan M. An evaluation of the use of EBT-XD film for SRS/SBRT commissioning of a 1.5 Tesla MR-Linac system. Phys Med. 2022;96:9–17.
pmcid: 9396448
Khan AU, Simiele EA, Lotey R, DeWerd LA, Yadav P. Development and evaluation of a GEANT4-based Monte Carlo Model of a 0.35 T MR-guided radiation therapy (MRgRT) linear accelerator. Med Phys. 2021;48(4):1967–82.
pubmed: 33555052
Valdenaire S, Riou O, Aillères N, Fenoglietto P, Azria D, Debuire P. Acceptance, commissioning and quality assurance of the MRIdian®: site experience and three years follow-up. Cancer Radiother. 2023;27(4):303–11.
pubmed: 37149464
Woodings SJ, de Vries JHW, Kok JMG, Hackett SL, van Asselen B, Bluemink JJ, et al. Acceptance procedure for the linear accelerator component of the 1.5 T MRI-linac. J Appl Clin Med Phys. 2021;22(8):45–59.
pubmed: 34275176 pmcid: 8364272
Snyder JE, St-Aubin J, Yaddanapudi S, Boczkowski A, Dunkerley DAP, Graves SA, et al. Commissioning of a 1.5T Elekta Unity MR-linac: a single institution experience. J Appl Clin Med Phys. 2020;21(7):160–72.
pubmed: 32432405 pmcid: 7386194
Tijssen RHN, Philippens MEP, Paulson ES, Glitzner M, Chugh B, Wetscherek A, et al. MRI commissioning of 1.5T MR-linac systems—a multi-institutional study. Radiother Oncol. 2019;132:114–20.
pubmed: 30825959
Powers M, Baines J, Crane R, Fisher C, Gibson S, Marsh L, et al. Commissioning measurements on an Elekta Unity MR-Linac. Phys Eng Sci Med. 2022;45(2):457–73.
pubmed: 35235188 pmcid: 9239956
Sahani G, Sharma SD, Sharma PK, Deshpande DD, Negi PS, Sathianarayanan VK, et al. Acceptance criteria for flattening filter-free photon beam from standard medical electron linear accelerator: AERB task group recommendations. J Med Phys. 2014;39(4):206–11.
pubmed: 25525307 pmcid: 4258727
Fogliata A, Garcia R, Knoos T, Nicolini G, Clivio A, Vanetti E, et al. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med Phys. 2012;39(10):6455–64.
pubmed: 23039680
Moignier C, Huet C, Barraux V, Fontaine J, Loiseau C, Sebe-Mercier K, Batalla A, Makovicka L. Development of a protocol for small beam bi-dimensional dose distribution measurements with radiochromic films. Radiat Meas. 2016;89:107–18.
Weber C, Kranzer R, Weidner J, Kröninger K, Poppe B, Looe HK, et al. Small field output correction factors of the microSilicon detector and a deeper understanding of their origin by quantifying perturbation factors. Med Phys. 2020;47(7):3165–73.
pubmed: 32196683
Bassinet C, Huet C, Derreumaux S, Brunet G, Chea M, Baumann M, et al. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys. 2013;40(7):071725.
pubmed: 23822429
Moignier C, Huet C, Makovicka L. Determination of the KQclinfclin, Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method. Med Phys. 2014;41(7):071702.
pubmed: 24989371
Darafsheh A, Hao Y, Maraghechi B, Cammin J, Reynoso FJ, Khan R. Influence of 0.35 T magnetic field on the response of EBT3 and EBT-XD radiochromic films. Med Phys. 2020;47(9):4543–52.
pubmed: 32502280
Xhaferllari I, Kim JP, Liyanage R, Liu C, Du D, Doemer A, et al. Clinical utility of Gafchromic film in an MRI-guided linear accelerator. Radiat Oncol. 2021;16(1):117.
pubmed: 34174932 pmcid: 8236160
IAEA-TECDOC-1583. Commissioning of radiotherapy treatment planning systems: Testing for typical external beam treatment techniques. Vienna: International Atomic Energy Agency; 2008.
Hastie T, Tibshirani R. Generalized additive models for medical research. Stat Methods Med Res. 1995;4(3):187–96.
pubmed: 8548102
Van Battum LJ, Hoffmans D, Piersma H, Heukelom S. Accurate dosimetry with GafChromic EBT film of a 6 MV photon beam in water: what level is achievable? Med Phys. 2008;35(2):704–16.
pubmed: 18383692

Auteurs

Michel Chea (M)

Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France. michel.chea@aphp.fr.

Mathilde Croisé (M)

Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.

Christelle Huet (C)

Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France.

Céline Bassinet (C)

Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France.

Mohamed-Amine Benadjaoud (MA)

Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, 92260, Fontenay-aux-Roses, France.

Catherine Jenny (C)

Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.

Classifications MeSH