Outcome differences by sex in oncology clinical trials.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Mar 2024
Historique:
received: 16 05 2023
accepted: 15 03 2024
medline: 24 3 2024
pubmed: 24 3 2024
entrez: 24 3 2024
Statut: epublish

Résumé

Identifying sex differences in outcomes and toxicity between males and females in oncology clinical trials is important and has also been mandated by National Institutes of Health policies. Here we analyze the Trialtrove database, finding that, strikingly, only 472/89,221 oncology clinical trials (0.5%) had curated post-treatment sex comparisons. Among 288 trials with comparisons of survival, outcome, or response, 16% report males having statistically significant better survival outcome or response, while 42% reported significantly better survival outcome or response for females. The strongest differences are in trials of EGFR inhibitors in lung cancer and rituximab in non-Hodgkin's lymphoma (both favoring females). Among 44 trials with side effect comparisons, more trials report significantly lesser side effects in males (N = 22) than in females (N = 13). Thus, while statistical comparisons between sexes in oncology trials are rarely reported, important differences in outcome and toxicity exist. These considerable outcome and toxicity differences highlight the need for reporting sex differences more thoroughly going forward.

Identifiants

pubmed: 38521835
doi: 10.1038/s41467-024-46945-x
pii: 10.1038/s41467-024-46945-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2608

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Clayton, J. A. & Collins, F. S. Policy: NIH to balance sex in cell and animal studies. Nature 509, 282–283 (2014).
pubmed: 24834516 pmcid: 5101948 doi: 10.1038/509282a
Clayton, J. A. Studying both sexes: a guiding principle for biomedicine. FASEB J. 30, 519–524 (2016).
pubmed: 26514164 doi: 10.1096/fj.15-279554
Özdemir, B. C., Csajka, C., Dotto, G. P. & Wagner, A. D. Sex differences in efficacy and toxicity of systemic treatments: An undervalued issue in the era of precision oncology. J. Clin. Oncol. 36, 2680–2683 (2018).
pubmed: 30004815 doi: 10.1200/JCO.2018.78.3290
Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharm. Rev. 73, 730–762 (2021).
pubmed: 33653873 pmcid: 7938661 doi: 10.1124/pharmrev.120.000206
Moyer, A. M., Matey, E. T. & Miller, V. M. Individualized medicine: Sex, hormones, genetics, and adverse drug reactions. Pharm. Res. Perspect. 7, e00541 (2019).
doi: 10.1002/prp2.541
Madla, C. M. et al. Let’s talk about sex: Differences in drug therapy in males and females. Adv. Drug Deliv. Rev. 175, 113804 (2021).
pubmed: 34015416 doi: 10.1016/j.addr.2021.05.014
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).
pubmed: 27546235 doi: 10.1038/nri.2016.90
Trenaman, S. C., Bowles, S. K., Andrew, M. K. & Goralski, K. The role of sex, age and genetic polymorphisms of CYP enzymes on the pharmacokinetics of anticholinergic drugs. Pharm. Res. Perspect. 9, e00775 (2021).
doi: 10.1002/prp2.775
Soldin, O. P., Chung, S. H. & Mattison, D. R. Sex differences in drug disposition. J. Biomed. Biotechnol. 2011, 187103 (2011).
pubmed: 21403873 pmcid: 3051160 doi: 10.1155/2011/187103
Haupt, S., Caramia, F., Klein, S. L., Rubin, J. B. & Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 21, 393–407 (2021).
pubmed: 33879867 pmcid: 8284191 doi: 10.1038/s41568-021-00348-y
Tannenbaum, C., Day, D. & Alliance, M. Age and sex in drug development and testing for adults. Pharm. Res. 121, 83–93 (2017).
doi: 10.1016/j.phrs.2017.04.027
Chen, J.-J. et al. Family resilience, perceived social support, and individual resilience in cancer couples: Analysis using the actor-partner interdependence mediation model. Eur. J. Oncol. Nurs. 52, 101932 (2021).
pubmed: 33799020 doi: 10.1016/j.ejon.2021.101932
Geller, S. E. et al. The more things change, the more they stay the same: A study to evaluate compliance with inclusion and assessment of women and minorities in randomized controlled trials. Acad. Med. 93, 630–635 (2018).
pubmed: 29053489 pmcid: 5908758 doi: 10.1097/ACM.0000000000002027
Arciero, V. et al. Do female and male patients derive similar benefits from approved systemic oncology therapies? A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 149, 4215–4224 (2023).
pubmed: 36056954 doi: 10.1007/s00432-022-04270-0
Sugimoto, C. R., Ahn, Y. Y., Smith, E., Macaluso, B. & Larivière, V. Factors affecting sex-related reporting in medical research: a cross-disciplinary bibliometric analysis. Lancet 393, 550–559 (2019).
pubmed: 30739690 doi: 10.1016/S0140-6736(18)32995-7
Hall, M. et al. An evaluation of sex- and gender-based analyses in oncology clinical trials. J. Natl Cancer Inst. 114, 1186–1191 (2022).
pubmed: 35477781 pmcid: 9360459 doi: 10.1093/jnci/djac092
Mendis, S. et al. Sex representation in clinical trials associated with FDA cancer drug approvals differs between solid and hematologic malignancies. Oncologist 26, 107–114 (2021).
pubmed: 32960478 doi: 10.1002/onco.13534
Gispen-de Wied, C. & de Boer, A. Commentary on ‘Gender differences in clinical registration trials; is there a real problem?’ by Labots et al. Br. J. Clin. Pharm. 84, 1639–1640 (2018).
doi: 10.1111/bcp.13620
Stader, F. & Marzolini, C. Sex-related pharmacokinetic differences with aging. Eur. Geriatr. Med. 13, 559–565 (2022).
pubmed: 34797553 doi: 10.1007/s41999-021-00587-0
Dong, M. et al. Sex differences in cancer incidence and survival: A pan-cancer analysis. Cancer Epidemiol. Biomark. Prev. 29, 1389–1397 (2020).
doi: 10.1158/1055-9965.EPI-20-0036
Hägg, S. & Jylhävä, J. Sex differences in biological aging with a focus on human studies. Elife 10, https://doi.org/10.7554/eLife.63425 (2021).
Lee, C. K. et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: A systematic review and meta-analysis. JAMA Oncol. 4, 210–216 (2018).
pubmed: 29270615 doi: 10.1001/jamaoncol.2017.4427
Zhernakova, D. et al. Age-dependent sex differences in cardiometabolic risk factors. Nat. Cardivasc. Res. 1, 844–854 (2022).
doi: 10.1038/s44161-022-00131-8
Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018).
pubmed: 29778737 doi: 10.1016/S1470-2045(18)30261-4
De Courcy, L., Bezak, E. & Marcu, L. G. Gender-dependent radiotherapy: The next step in personalised medicine? Crit. Rev. Oncol. Hematol. 147, 102881 (2020).
pubmed: 31991224 doi: 10.1016/j.critrevonc.2020.102881
Wilson, B. E., Nadler, M. B., Desnoyers, A., Booth, C. M. & Amir, E. Meta-analysis of sex and racial subgroup participation rates and differential treatment effects for trials in solid tumor malignancies leading to US Food and Drug Administration registration between 2010 and 2021. Cancer, https://doi.org/10.1002/cncr.35035 (2023).
Conforti, F. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: A systematic review and meta-analysis. J. Natl Cancer Inst. 111, 772–781 (2019).
pubmed: 31106827 pmcid: 6695312 doi: 10.1093/jnci/djz094
Irelli, A., Sirufo, M. M., D’Ugo, C., Ginaldi, L. & De Martinis, M. Sex and gender influences on cancer mmunotherapy response. Biomedicines 8, https://doi.org/10.3390/biomedicines8070232 (2020).
Pala, L. et al. Sex and cancer immunotherapy: Current understanding and challenges. Cancer Cell 40, 695–700 (2022).
pubmed: 35750053 doi: 10.1016/j.ccell.2022.06.005
Raskin, J. et al. New implications of patients’ sex in today’s lung cancer management. Cancers 14, https://doi.org/10.3390/cancers14143399 (2022).
Takada, K. et al. Association between sex and outcomes in patients with non-small-cell lung cancer receiving combination chemoimmunotherapy as a first-line therapy: a systematic review and meta-analysis of randomized clinical trials. Eur. J. Med. Res. 27, 157 (2022).
pubmed: 35999618 pmcid: 9400263 doi: 10.1186/s40001-022-00789-7
Wallis, C. J. D. et al. Association of Patient Sex With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Advanced Cancers: A Systematic Review and Meta-analysis. JAMA Oncol. 5, 529–536 (2019).
pubmed: 30605213 pmcid: 6459215 doi: 10.1001/jamaoncol.2018.5904
Ye, Y. et al. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11, 1779 (2020).
pubmed: 32286310 pmcid: 7156379 doi: 10.1038/s41467-020-15679-x
Frega, S. et al. Sex-based heterogeneity in non-small cell lung cancer (NSCLC) and response to immune checkpoint inhibitors (ICIs): a narrative review. Prec. Cancer Med. 4, 26 (2021).
Mederos, N., Friedlaender, A., Peters, S. & Addeo, A. Gender-specific aspects of epidemiology, molecular genetics and outcome: lung cancer. ESMO Open 5, e000796 (2020).
pubmed: 33148544 pmcid: 7643520 doi: 10.1136/esmoopen-2020-000796
Chen, C., Zhang, C., Jin, Z., Wu, B. & Xu, T. Sex differences in immune-related adverse events with immune checkpoint inhibitors: data mining of the FDA adverse event reporting system. Int J. Clin. Pharm. 44, 689–697 (2022).
pubmed: 35449347 doi: 10.1007/s11096-022-01395-7
Davidson, M. et al. Influence of sex on chemotherapy efficacy and toxicity in oesophagogastric cancer: A pooled analysis of four randomised trials. Eur. J. Cancer 121, 40–47 (2019).
pubmed: 31542640 doi: 10.1016/j.ejca.2019.08.010
Nicolson, T. J., Mellor, H. R. & Roberts, R. R. A. Gender differences in drug toxicity. Trends Pharm. Sci. 31, 108–114 (2010).
pubmed: 20117848 doi: 10.1016/j.tips.2009.12.001
Sloan, J. A. et al. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer. J. Clin. Oncol. 20, 1491–1498 (2002).
pubmed: 11896096 doi: 10.1200/JCO.2002.20.6.1491
Wang, J. & Huang, Y. Pharmacogenomics of sex difference in chemotherapeutic toxicity. Curr. Drug Discov. Technol. 4, 59–68 (2007).
pubmed: 17630929 doi: 10.2174/157016307781115485
Wagner, A. D. et al. Sex and Adverse Events of Adjuvant Chemotherapy in Colon Cancer: An Analysis of 34 640 Patients in the ACCENT Database. J. Natl Cancer Inst. 113, 400–407 (2021).
pubmed: 32835356 doi: 10.1093/jnci/djaa124
Wabont, G., Bergeron, S., Gautier, S. & Barus, R. Sex differences in serious adverse drug reactions in patients receiving immunotherapy, targeted therapy, or chemotherapy: a disproportionality analysis of the VigiBase®. Eur. J. Clin. Pharm. 78, 1355–1356 (2022).
doi: 10.1007/s00228-022-03332-z
Stergiopoulos, S., Getz, K. A. & Blazynski, C. Evaluating the completeness of ClinicalTrials.gov. Ther. Innov. Regul. Sci. 53, 307–317 (2019).
pubmed: 30048602 doi: 10.1177/2168479018782885
Saad, M. et al. Enhanced immune activation within the tumor microenvironment and circulation of female high-risk melanoma patients and improved survival with adjuvant CTLA4 blockade compared to males. J. Transl. Med. 20, 253 (2022).
pubmed: 35659704 pmcid: 9164320 doi: 10.1186/s12967-022-03450-3
Austad, S. N. & Fischer, K. E. Sex differences in lifespan. Cell Metab. 23, 1022–1033 (2016).
pubmed: 27304504 pmcid: 4932837 doi: 10.1016/j.cmet.2016.05.019
Knufinke, M., MacArthur, M. R., Ewald, C. Y. & Mitchell, S. J. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. Front. Aging 4, 1172789 (2023).
pubmed: 37305228 pmcid: 10249017 doi: 10.3389/fragi.2023.1172789
Brand, K. J., Hapfelmeier, A. & Haller, B. A systematic review of subgroup analyses in randomised clinical trials in cardiovascular disease. Clin. Trials 18, 351–360 (2021).
pubmed: 33478253 pmcid: 8174013 doi: 10.1177/1740774520984866
Sun, X., Briel, M., Walter, S. D. & Guyatt, G. H. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ 340, c117 (2010).
pubmed: 20354011 doi: 10.1136/bmj.c117
Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. & Drazen, J. M. Statistics in medicine–reporting of subgroup analyses in clinical trials. N. Engl. J. Med. 357, 2189–2194 (2007).
pubmed: 18032770 doi: 10.1056/NEJMsr077003
Huang, Y., Cho, H. J., Stranger, B. E. & Huang, R. S. Sex dimorphism in response to targeted therapy and immunotherapy in non-small cell lung cancer patients: a narrative review. Transl. Lung Cancer Res. 11, 920–934 (2022).
pubmed: 35693273 pmcid: 9186178 doi: 10.21037/tlcr-21-1013
Lee, C. K. et al. Impact of specific epidermal growth factor receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: A meta-analysis. J. Clin. Oncol. 33, 1958–1965 (2015).
pubmed: 25897154 doi: 10.1200/JCO.2014.58.1736
Pinto, J. A. et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 3, e000344 (2018).
pubmed: 29682332 pmcid: 5905840 doi: 10.1136/esmoopen-2018-000344
Xiao, J., Zhou, L., He, B. & Chen, Q. Impact of Sex and Smoking on the Efficacy of EGFR-TKIs in Terms of Overall Survival in Non-small-Cell Lung Cancer: A Meta-Analysis. Front. Oncol. 10, 1531 (2020).
pubmed: 32984005 pmcid: 7477328 doi: 10.3389/fonc.2020.01531
Zhang, Y.-L. et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7, 78985–78993 (2016).
pubmed: 27738317 pmcid: 5346692 doi: 10.18632/oncotarget.12587
Domagala-Kulawik, J. & Trojnar, A. Lung cancer in women in 21th century. J. Thorac. Dis. 12, 4398–4410 (2020).
pubmed: 32944353 pmcid: 7475544 doi: 10.21037/jtd-20-287
Horesh, N. & Horowitz, N. A. Does gender matter in non-hodgkin lymphoma? Differences in epidemiology, clinical behavior, and therapy. Rambam Maimonides Med. J. 5, e0038 (2014).
pubmed: 25386354 pmcid: 4222427 doi: 10.5041/RMMJ.10172
Fresneau, B. et al. Investigating the heterogeneity of alkylating agents’ efficacy and toxicity between sexes: A systematic review and meta-analysis of randomized trials comparing cyclophosphamide and ifosfamide (MAIAGE study). Pediatr. Blood Cancer 64, https://doi.org/10.1002/pbc.26457 (2017).
Kim, H.-I., Lim, H. & Moon, A. Sex differences in cancer: Epidemiology, genetics and therapy. Biomol. Ther. 26, 335–342 (2018).
doi: 10.4062/biomolther.2018.103
Lucchini, E., Zaja, F. & Bussel, J. Rituximab in the treatment of immune thrombocytopenia: what is the role of this agent in 2019? Haematologica 104, 1124–1135 (2019).
pubmed: 31126963 pmcid: 6545833 doi: 10.3324/haematol.2019.218883
Müller, C. et al. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood 119, 3276–3284 (2012).
pubmed: 22337718 doi: 10.1182/blood-2011-09-380949
Heidari, S., Babor, T. F., De Castro, P., Tort, S. & Curno, M. Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res Integr. Peer Rev. 1, 2 (2016).
pubmed: 29451543 pmcid: 5793986 doi: 10.1186/s41073-016-0007-6
Schiebinger, L., Leopold, S. S. & Miller, V. M. Editorial policies for sex and gender analysis. Lancet 388, 2841–2842 (2016).
pubmed: 27979394 doi: 10.1016/S0140-6736(16)32392-3
Grassadonia, A. et al. Effect of gender on the outcome of patients receiving immune checkpoint inhibitors for advanced cancer: A systematic review and meta-analysis of phase III randomized clinical trials. J. Clin. Med. 7, https://doi.org/10.3390/jcm7120542 (2018).
Lai, L.-T. et al. Sex-related differences in the efficacy of immune checkpoint inhibitors in malignancy: a systematic review and meta-analysis. Aging 13, 15413–15432 (2021).
pubmed: 34086601 pmcid: 8221333 doi: 10.18632/aging.203100
Wang, S., Cowley, L. A. & Liu, X.-S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy. Molecules 24, https://doi.org/10.3390/molecules24183214 (2019).
Yang, F. et al. Association of Sex, Age, and Eastern Cooperative Oncology Group Performance Status With Survival Benefit of Cancer Immunotherapy in Randomized Clinical Trials: A Systematic Review and Meta-analysis. JAMA Netw. Open 3, e2012534 (2020).
pubmed: 32766800 pmcid: 7414387 doi: 10.1001/jamanetworkopen.2020.12534
Vellano, C. P. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606, 797–803 (2022).
pubmed: 35705814 pmcid: 10071594 doi: 10.1038/s41586-022-04833-8
Chang, M. et al. Developing timely insights into comparative effectiveness research with a text-mining pipeline. Drug Discov. Today 21, 473–480 (2016).
pubmed: 26854423 doi: 10.1016/j.drudis.2016.01.012
Wu, D. et al. The global landscape of neoadjuvant and adjuvant anti-PD-1/PD-L1 clinical trials. J. Hematol. Oncol. 15, 16 (2022).
pubmed: 35135567 pmcid: 8822713 doi: 10.1186/s13045-022-01227-1
Siah, K. W. et al. Predicting drug approvals: The Novartis data science and artificial intelligence challenge. Patterns 2, 100312 (2021).
pubmed: 34430930 pmcid: 8369231 doi: 10.1016/j.patter.2021.100312
Kammula, A. V., Schäffer, A. A. & Rajagopal, P. S. Characterization of oncology clinical trials using germline genetic data. JAMA Netw. Open 5, e2242370 (2022).
pubmed: 36383380 pmcid: 9669814 doi: 10.1001/jamanetworkopen.2022.42370
Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).
pubmed: 28388612 pmcid: 5568558 doi: 10.1038/nm.4306
Kammula, A. V., Schäffer A. A. Code repository for ‘Outcome differences by sex in clinical trials’ (this paper). Zenodo https://github.com/ruppinlab/ProcessTrialtrove , https://doi.org/10.5281/zenodo.10713794 (2023).

Auteurs

Ashwin V Kammula (AV)

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.

Alejandro A Schäffer (AA)

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA. alejandro.schaffer@nih.gov.

Padma Sheila Rajagopal (PS)

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.

Razelle Kurzrock (R)

WIN Consortium and Medical College of Wisconsin, Milwaukee, WI 53226 and University of Nebraska, Omaha, NE, 68198, USA.

Eytan Ruppin (E)

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA. eytan.ruppin@nih.gov.

Classifications MeSH