Outcome differences by sex in oncology clinical trials.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 Mar 2024
23 Mar 2024
Historique:
received:
16
05
2023
accepted:
15
03
2024
medline:
24
3
2024
pubmed:
24
3
2024
entrez:
24
3
2024
Statut:
epublish
Résumé
Identifying sex differences in outcomes and toxicity between males and females in oncology clinical trials is important and has also been mandated by National Institutes of Health policies. Here we analyze the Trialtrove database, finding that, strikingly, only 472/89,221 oncology clinical trials (0.5%) had curated post-treatment sex comparisons. Among 288 trials with comparisons of survival, outcome, or response, 16% report males having statistically significant better survival outcome or response, while 42% reported significantly better survival outcome or response for females. The strongest differences are in trials of EGFR inhibitors in lung cancer and rituximab in non-Hodgkin's lymphoma (both favoring females). Among 44 trials with side effect comparisons, more trials report significantly lesser side effects in males (N = 22) than in females (N = 13). Thus, while statistical comparisons between sexes in oncology trials are rarely reported, important differences in outcome and toxicity exist. These considerable outcome and toxicity differences highlight the need for reporting sex differences more thoroughly going forward.
Identifiants
pubmed: 38521835
doi: 10.1038/s41467-024-46945-x
pii: 10.1038/s41467-024-46945-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2608Informations de copyright
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Clayton, J. A. & Collins, F. S. Policy: NIH to balance sex in cell and animal studies. Nature 509, 282–283 (2014).
pubmed: 24834516
pmcid: 5101948
doi: 10.1038/509282a
Clayton, J. A. Studying both sexes: a guiding principle for biomedicine. FASEB J. 30, 519–524 (2016).
pubmed: 26514164
doi: 10.1096/fj.15-279554
Özdemir, B. C., Csajka, C., Dotto, G. P. & Wagner, A. D. Sex differences in efficacy and toxicity of systemic treatments: An undervalued issue in the era of precision oncology. J. Clin. Oncol. 36, 2680–2683 (2018).
pubmed: 30004815
doi: 10.1200/JCO.2018.78.3290
Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharm. Rev. 73, 730–762 (2021).
pubmed: 33653873
pmcid: 7938661
doi: 10.1124/pharmrev.120.000206
Moyer, A. M., Matey, E. T. & Miller, V. M. Individualized medicine: Sex, hormones, genetics, and adverse drug reactions. Pharm. Res. Perspect. 7, e00541 (2019).
doi: 10.1002/prp2.541
Madla, C. M. et al. Let’s talk about sex: Differences in drug therapy in males and females. Adv. Drug Deliv. Rev. 175, 113804 (2021).
pubmed: 34015416
doi: 10.1016/j.addr.2021.05.014
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).
pubmed: 27546235
doi: 10.1038/nri.2016.90
Trenaman, S. C., Bowles, S. K., Andrew, M. K. & Goralski, K. The role of sex, age and genetic polymorphisms of CYP enzymes on the pharmacokinetics of anticholinergic drugs. Pharm. Res. Perspect. 9, e00775 (2021).
doi: 10.1002/prp2.775
Soldin, O. P., Chung, S. H. & Mattison, D. R. Sex differences in drug disposition. J. Biomed. Biotechnol. 2011, 187103 (2011).
pubmed: 21403873
pmcid: 3051160
doi: 10.1155/2011/187103
Haupt, S., Caramia, F., Klein, S. L., Rubin, J. B. & Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 21, 393–407 (2021).
pubmed: 33879867
pmcid: 8284191
doi: 10.1038/s41568-021-00348-y
Tannenbaum, C., Day, D. & Alliance, M. Age and sex in drug development and testing for adults. Pharm. Res. 121, 83–93 (2017).
doi: 10.1016/j.phrs.2017.04.027
Chen, J.-J. et al. Family resilience, perceived social support, and individual resilience in cancer couples: Analysis using the actor-partner interdependence mediation model. Eur. J. Oncol. Nurs. 52, 101932 (2021).
pubmed: 33799020
doi: 10.1016/j.ejon.2021.101932
Geller, S. E. et al. The more things change, the more they stay the same: A study to evaluate compliance with inclusion and assessment of women and minorities in randomized controlled trials. Acad. Med. 93, 630–635 (2018).
pubmed: 29053489
pmcid: 5908758
doi: 10.1097/ACM.0000000000002027
Arciero, V. et al. Do female and male patients derive similar benefits from approved systemic oncology therapies? A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 149, 4215–4224 (2023).
pubmed: 36056954
doi: 10.1007/s00432-022-04270-0
Sugimoto, C. R., Ahn, Y. Y., Smith, E., Macaluso, B. & Larivière, V. Factors affecting sex-related reporting in medical research: a cross-disciplinary bibliometric analysis. Lancet 393, 550–559 (2019).
pubmed: 30739690
doi: 10.1016/S0140-6736(18)32995-7
Hall, M. et al. An evaluation of sex- and gender-based analyses in oncology clinical trials. J. Natl Cancer Inst. 114, 1186–1191 (2022).
pubmed: 35477781
pmcid: 9360459
doi: 10.1093/jnci/djac092
Mendis, S. et al. Sex representation in clinical trials associated with FDA cancer drug approvals differs between solid and hematologic malignancies. Oncologist 26, 107–114 (2021).
pubmed: 32960478
doi: 10.1002/onco.13534
Gispen-de Wied, C. & de Boer, A. Commentary on ‘Gender differences in clinical registration trials; is there a real problem?’ by Labots et al. Br. J. Clin. Pharm. 84, 1639–1640 (2018).
doi: 10.1111/bcp.13620
Stader, F. & Marzolini, C. Sex-related pharmacokinetic differences with aging. Eur. Geriatr. Med. 13, 559–565 (2022).
pubmed: 34797553
doi: 10.1007/s41999-021-00587-0
Dong, M. et al. Sex differences in cancer incidence and survival: A pan-cancer analysis. Cancer Epidemiol. Biomark. Prev. 29, 1389–1397 (2020).
doi: 10.1158/1055-9965.EPI-20-0036
Hägg, S. & Jylhävä, J. Sex differences in biological aging with a focus on human studies. Elife 10, https://doi.org/10.7554/eLife.63425 (2021).
Lee, C. K. et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: A systematic review and meta-analysis. JAMA Oncol. 4, 210–216 (2018).
pubmed: 29270615
doi: 10.1001/jamaoncol.2017.4427
Zhernakova, D. et al. Age-dependent sex differences in cardiometabolic risk factors. Nat. Cardivasc. Res. 1, 844–854 (2022).
doi: 10.1038/s44161-022-00131-8
Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018).
pubmed: 29778737
doi: 10.1016/S1470-2045(18)30261-4
De Courcy, L., Bezak, E. & Marcu, L. G. Gender-dependent radiotherapy: The next step in personalised medicine? Crit. Rev. Oncol. Hematol. 147, 102881 (2020).
pubmed: 31991224
doi: 10.1016/j.critrevonc.2020.102881
Wilson, B. E., Nadler, M. B., Desnoyers, A., Booth, C. M. & Amir, E. Meta-analysis of sex and racial subgroup participation rates and differential treatment effects for trials in solid tumor malignancies leading to US Food and Drug Administration registration between 2010 and 2021. Cancer, https://doi.org/10.1002/cncr.35035 (2023).
Conforti, F. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: A systematic review and meta-analysis. J. Natl Cancer Inst. 111, 772–781 (2019).
pubmed: 31106827
pmcid: 6695312
doi: 10.1093/jnci/djz094
Irelli, A., Sirufo, M. M., D’Ugo, C., Ginaldi, L. & De Martinis, M. Sex and gender influences on cancer mmunotherapy response. Biomedicines 8, https://doi.org/10.3390/biomedicines8070232 (2020).
Pala, L. et al. Sex and cancer immunotherapy: Current understanding and challenges. Cancer Cell 40, 695–700 (2022).
pubmed: 35750053
doi: 10.1016/j.ccell.2022.06.005
Raskin, J. et al. New implications of patients’ sex in today’s lung cancer management. Cancers 14, https://doi.org/10.3390/cancers14143399 (2022).
Takada, K. et al. Association between sex and outcomes in patients with non-small-cell lung cancer receiving combination chemoimmunotherapy as a first-line therapy: a systematic review and meta-analysis of randomized clinical trials. Eur. J. Med. Res. 27, 157 (2022).
pubmed: 35999618
pmcid: 9400263
doi: 10.1186/s40001-022-00789-7
Wallis, C. J. D. et al. Association of Patient Sex With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Advanced Cancers: A Systematic Review and Meta-analysis. JAMA Oncol. 5, 529–536 (2019).
pubmed: 30605213
pmcid: 6459215
doi: 10.1001/jamaoncol.2018.5904
Ye, Y. et al. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11, 1779 (2020).
pubmed: 32286310
pmcid: 7156379
doi: 10.1038/s41467-020-15679-x
Frega, S. et al. Sex-based heterogeneity in non-small cell lung cancer (NSCLC) and response to immune checkpoint inhibitors (ICIs): a narrative review. Prec. Cancer Med. 4, 26 (2021).
Mederos, N., Friedlaender, A., Peters, S. & Addeo, A. Gender-specific aspects of epidemiology, molecular genetics and outcome: lung cancer. ESMO Open 5, e000796 (2020).
pubmed: 33148544
pmcid: 7643520
doi: 10.1136/esmoopen-2020-000796
Chen, C., Zhang, C., Jin, Z., Wu, B. & Xu, T. Sex differences in immune-related adverse events with immune checkpoint inhibitors: data mining of the FDA adverse event reporting system. Int J. Clin. Pharm. 44, 689–697 (2022).
pubmed: 35449347
doi: 10.1007/s11096-022-01395-7
Davidson, M. et al. Influence of sex on chemotherapy efficacy and toxicity in oesophagogastric cancer: A pooled analysis of four randomised trials. Eur. J. Cancer 121, 40–47 (2019).
pubmed: 31542640
doi: 10.1016/j.ejca.2019.08.010
Nicolson, T. J., Mellor, H. R. & Roberts, R. R. A. Gender differences in drug toxicity. Trends Pharm. Sci. 31, 108–114 (2010).
pubmed: 20117848
doi: 10.1016/j.tips.2009.12.001
Sloan, J. A. et al. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer. J. Clin. Oncol. 20, 1491–1498 (2002).
pubmed: 11896096
doi: 10.1200/JCO.2002.20.6.1491
Wang, J. & Huang, Y. Pharmacogenomics of sex difference in chemotherapeutic toxicity. Curr. Drug Discov. Technol. 4, 59–68 (2007).
pubmed: 17630929
doi: 10.2174/157016307781115485
Wagner, A. D. et al. Sex and Adverse Events of Adjuvant Chemotherapy in Colon Cancer: An Analysis of 34 640 Patients in the ACCENT Database. J. Natl Cancer Inst. 113, 400–407 (2021).
pubmed: 32835356
doi: 10.1093/jnci/djaa124
Wabont, G., Bergeron, S., Gautier, S. & Barus, R. Sex differences in serious adverse drug reactions in patients receiving immunotherapy, targeted therapy, or chemotherapy: a disproportionality analysis of the VigiBase®. Eur. J. Clin. Pharm. 78, 1355–1356 (2022).
doi: 10.1007/s00228-022-03332-z
Stergiopoulos, S., Getz, K. A. & Blazynski, C. Evaluating the completeness of ClinicalTrials.gov. Ther. Innov. Regul. Sci. 53, 307–317 (2019).
pubmed: 30048602
doi: 10.1177/2168479018782885
Saad, M. et al. Enhanced immune activation within the tumor microenvironment and circulation of female high-risk melanoma patients and improved survival with adjuvant CTLA4 blockade compared to males. J. Transl. Med. 20, 253 (2022).
pubmed: 35659704
pmcid: 9164320
doi: 10.1186/s12967-022-03450-3
Austad, S. N. & Fischer, K. E. Sex differences in lifespan. Cell Metab. 23, 1022–1033 (2016).
pubmed: 27304504
pmcid: 4932837
doi: 10.1016/j.cmet.2016.05.019
Knufinke, M., MacArthur, M. R., Ewald, C. Y. & Mitchell, S. J. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. Front. Aging 4, 1172789 (2023).
pubmed: 37305228
pmcid: 10249017
doi: 10.3389/fragi.2023.1172789
Brand, K. J., Hapfelmeier, A. & Haller, B. A systematic review of subgroup analyses in randomised clinical trials in cardiovascular disease. Clin. Trials 18, 351–360 (2021).
pubmed: 33478253
pmcid: 8174013
doi: 10.1177/1740774520984866
Sun, X., Briel, M., Walter, S. D. & Guyatt, G. H. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ 340, c117 (2010).
pubmed: 20354011
doi: 10.1136/bmj.c117
Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. & Drazen, J. M. Statistics in medicine–reporting of subgroup analyses in clinical trials. N. Engl. J. Med. 357, 2189–2194 (2007).
pubmed: 18032770
doi: 10.1056/NEJMsr077003
Huang, Y., Cho, H. J., Stranger, B. E. & Huang, R. S. Sex dimorphism in response to targeted therapy and immunotherapy in non-small cell lung cancer patients: a narrative review. Transl. Lung Cancer Res. 11, 920–934 (2022).
pubmed: 35693273
pmcid: 9186178
doi: 10.21037/tlcr-21-1013
Lee, C. K. et al. Impact of specific epidermal growth factor receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: A meta-analysis. J. Clin. Oncol. 33, 1958–1965 (2015).
pubmed: 25897154
doi: 10.1200/JCO.2014.58.1736
Pinto, J. A. et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 3, e000344 (2018).
pubmed: 29682332
pmcid: 5905840
doi: 10.1136/esmoopen-2018-000344
Xiao, J., Zhou, L., He, B. & Chen, Q. Impact of Sex and Smoking on the Efficacy of EGFR-TKIs in Terms of Overall Survival in Non-small-Cell Lung Cancer: A Meta-Analysis. Front. Oncol. 10, 1531 (2020).
pubmed: 32984005
pmcid: 7477328
doi: 10.3389/fonc.2020.01531
Zhang, Y.-L. et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7, 78985–78993 (2016).
pubmed: 27738317
pmcid: 5346692
doi: 10.18632/oncotarget.12587
Domagala-Kulawik, J. & Trojnar, A. Lung cancer in women in 21th century. J. Thorac. Dis. 12, 4398–4410 (2020).
pubmed: 32944353
pmcid: 7475544
doi: 10.21037/jtd-20-287
Horesh, N. & Horowitz, N. A. Does gender matter in non-hodgkin lymphoma? Differences in epidemiology, clinical behavior, and therapy. Rambam Maimonides Med. J. 5, e0038 (2014).
pubmed: 25386354
pmcid: 4222427
doi: 10.5041/RMMJ.10172
Fresneau, B. et al. Investigating the heterogeneity of alkylating agents’ efficacy and toxicity between sexes: A systematic review and meta-analysis of randomized trials comparing cyclophosphamide and ifosfamide (MAIAGE study). Pediatr. Blood Cancer 64, https://doi.org/10.1002/pbc.26457 (2017).
Kim, H.-I., Lim, H. & Moon, A. Sex differences in cancer: Epidemiology, genetics and therapy. Biomol. Ther. 26, 335–342 (2018).
doi: 10.4062/biomolther.2018.103
Lucchini, E., Zaja, F. & Bussel, J. Rituximab in the treatment of immune thrombocytopenia: what is the role of this agent in 2019? Haematologica 104, 1124–1135 (2019).
pubmed: 31126963
pmcid: 6545833
doi: 10.3324/haematol.2019.218883
Müller, C. et al. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood 119, 3276–3284 (2012).
pubmed: 22337718
doi: 10.1182/blood-2011-09-380949
Heidari, S., Babor, T. F., De Castro, P., Tort, S. & Curno, M. Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res Integr. Peer Rev. 1, 2 (2016).
pubmed: 29451543
pmcid: 5793986
doi: 10.1186/s41073-016-0007-6
Schiebinger, L., Leopold, S. S. & Miller, V. M. Editorial policies for sex and gender analysis. Lancet 388, 2841–2842 (2016).
pubmed: 27979394
doi: 10.1016/S0140-6736(16)32392-3
Grassadonia, A. et al. Effect of gender on the outcome of patients receiving immune checkpoint inhibitors for advanced cancer: A systematic review and meta-analysis of phase III randomized clinical trials. J. Clin. Med. 7, https://doi.org/10.3390/jcm7120542 (2018).
Lai, L.-T. et al. Sex-related differences in the efficacy of immune checkpoint inhibitors in malignancy: a systematic review and meta-analysis. Aging 13, 15413–15432 (2021).
pubmed: 34086601
pmcid: 8221333
doi: 10.18632/aging.203100
Wang, S., Cowley, L. A. & Liu, X.-S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy. Molecules 24, https://doi.org/10.3390/molecules24183214 (2019).
Yang, F. et al. Association of Sex, Age, and Eastern Cooperative Oncology Group Performance Status With Survival Benefit of Cancer Immunotherapy in Randomized Clinical Trials: A Systematic Review and Meta-analysis. JAMA Netw. Open 3, e2012534 (2020).
pubmed: 32766800
pmcid: 7414387
doi: 10.1001/jamanetworkopen.2020.12534
Vellano, C. P. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606, 797–803 (2022).
pubmed: 35705814
pmcid: 10071594
doi: 10.1038/s41586-022-04833-8
Chang, M. et al. Developing timely insights into comparative effectiveness research with a text-mining pipeline. Drug Discov. Today 21, 473–480 (2016).
pubmed: 26854423
doi: 10.1016/j.drudis.2016.01.012
Wu, D. et al. The global landscape of neoadjuvant and adjuvant anti-PD-1/PD-L1 clinical trials. J. Hematol. Oncol. 15, 16 (2022).
pubmed: 35135567
pmcid: 8822713
doi: 10.1186/s13045-022-01227-1
Siah, K. W. et al. Predicting drug approvals: The Novartis data science and artificial intelligence challenge. Patterns 2, 100312 (2021).
pubmed: 34430930
pmcid: 8369231
doi: 10.1016/j.patter.2021.100312
Kammula, A. V., Schäffer, A. A. & Rajagopal, P. S. Characterization of oncology clinical trials using germline genetic data. JAMA Netw. Open 5, e2242370 (2022).
pubmed: 36383380
pmcid: 9669814
doi: 10.1001/jamanetworkopen.2022.42370
Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).
pubmed: 28388612
pmcid: 5568558
doi: 10.1038/nm.4306
Kammula, A. V., Schäffer A. A. Code repository for ‘Outcome differences by sex in clinical trials’ (this paper). Zenodo https://github.com/ruppinlab/ProcessTrialtrove , https://doi.org/10.5281/zenodo.10713794 (2023).