The evolution and formation of centromeric repeats analysis in Vitis vinifera.
Centromeric repeats
ChIP
FISH
Grape
Polyploidy
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
24 Mar 2024
24 Mar 2024
Historique:
received:
30
11
2023
accepted:
03
03
2024
medline:
24
3
2024
pubmed:
24
3
2024
entrez:
24
3
2024
Statut:
epublish
Résumé
Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.
Identifiants
pubmed: 38522063
doi: 10.1007/s00425-024-04374-6
pii: 10.1007/s00425-024-04374-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
99Subventions
Organisme : National Natural Science Foundation of China
ID : 32272647
Organisme : Jiangsu Agricultural Industry Technology System
ID : JATS[2022]457
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233
pubmed: 7851795
doi: 10.1101/gad.9.2.218
Bloom K, Costanzo V (2017) Centromere structure and function. Prog Mol Subcell Biol 56:515–539
pubmed: 28840251
pmcid: 6535225
doi: 10.1007/978-3-319-58592-5_21
Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, Carbone L, de Jong PJ, Stanyon R, D’Addabbo P, Archidiacono N, She X, Eichler EE, Warburton PE, Rocchi M (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91
pubmed: 17040560
pmcid: 1794570
doi: 10.1186/gb-2006-7-10-r91
Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9:33–46
pubmed: 18097444
doi: 10.1038/nrm2310
Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704
pubmed: 12172016
pmcid: 151459
doi: 10.1105/tpc.003079
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR (2015) Genomic repeat abundances contain phylogenetic signal. Syst Biol 64:112–126
pubmed: 25261464
doi: 10.1093/sysbio/syu080
Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321
pubmed: 2579778
doi: 10.1007/BF00328227
Falistocco E, Passeri V, Marconi G (2007) Investigations of 5S rDNA of Vitis vinifera L.: sequence analysis and physical mapping. Genome 50:927–938
pubmed: 18059555
doi: 10.1139/G07-070
Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7:e1000234
pubmed: 19859525
pmcid: 2760206
doi: 10.1371/journal.pbio.1000234
Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525
pubmed: 18618437
doi: 10.1002/pca.1078
Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T, Gaydos L, Barron F, Maddox P, Essex A, Monen J, Ercan S, Lieb JD, Oegema K, Strome S, Desai A (2012) An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484:534–537
pubmed: 22495302
pmcid: 3538161
doi: 10.1038/nature10973
Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574
pubmed: 22968715
pmcid: 3480287
doi: 10.1105/tpc.112.100511
Gorinšek B, Gubenšek F, Kordiš DA (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798
pubmed: 14739248
doi: 10.1093/molbev/msh057
Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107:18551–18556
pubmed: 20937885
pmcid: 2972935
doi: 10.1073/pnas.1014023107
Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X, Hu Z (2016) Han F (2016) De Novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet 12:e1005997
pubmed: 27110907
pmcid: 4844185
doi: 10.1371/journal.pgen.1005997
Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779
pubmed: 25971668
pmcid: 4512542
doi: 10.1534/genetics.115.177642
Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102
pubmed: 11498581
doi: 10.1126/science.1062939
Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283
pubmed: 17483978
doi: 10.1007/s00412-007-0102-z
Huang X, Zhu M, Zhuang L, Zhang S, Wang J, Chen X, Wang D, Chen J, Bao Y, Guo J, Zhang J, Feng Y, Chu C, Du P, Qi Z, Wang H, Chen P (2018) Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet 131:1967–1986
pubmed: 29947816
doi: 10.1007/s00122-018-3126-2
Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K (2021) The formation and evolution of centromeric satellite repeats in Saccharum species. Plant J 106:616–629
pubmed: 33547688
doi: 10.1111/tpj.15186
Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–1091
pubmed: 18719285
doi: 10.1126/science.1158699
Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572
pubmed: 9796106
doi: 10.1139/g98-093
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467
pubmed: 17721507
doi: 10.1038/nature06148
Ji W, Wang Y (2013) Breeding for seedless grapes using Chinese wild Vitis spp. II. In vitro embryo rescue and plant development. J Sci Food Agr 93:3870–3875
doi: 10.1002/jsfa.6342
Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 27:153–165
pubmed: 30852707
doi: 10.1007/s10577-019-09607-z
Keller M (2020) The science of grapevines, 3rd edn. Academic Press, London
Ketel C, Wang HS, McClellan M, Bouchonville K, Selmecki A, Lahav T, Gerami-Nejad M, Berman J (2009) Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 5:e1000400
pubmed: 19266018
pmcid: 2642679
doi: 10.1371/journal.pgen.1000400
Liang Z, Duan S, Sheng J, Zhu S, Ni X, Shao J, Liu C, Nick P, Du F, Fan P, Mao R, Zhu Y, Deng W, Yang M, Huang H, Liu Y, Ding Y, Liu X, Jiang J, Zhu Y, Li S, He X, Chen W, Dong Y (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 10:1190–1190
pubmed: 30867414
pmcid: 6416300
doi: 10.1038/s41467-019-09135-8
Lomiento M, Jiang Z, D’Addabbo P, Eichler EE, Rocchi M (2008) Evolutionary-new centromeres preferentially emerge within gene deserts. Genome Biol 9:R173
pubmed: 19087244
pmcid: 2646277
doi: 10.1186/gb-2008-9-12-r173
Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139
pubmed: 17275131
doi: 10.1016/j.tig.2007.01.004
Ma AH, Wu YQ, Guo ZJ, Zhao SJ (2009) Study on the genetic law of chromosome ploidy in the progenies of grape diploid and tetraploid crosses (in Chinese). Chinese Academy of Agriculture, pp 228–231
Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35
pubmed: 11836208
doi: 10.1093/bioinformatics/18.1.28
Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IA, Chèvre AM, Batley J, Nelson MN (2016) Centromere locations in Brassica A and C genomes revealed through half-tetrad analysis. Genetics 202:513–523
pubmed: 26614742
doi: 10.1534/genetics.115.183210
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SW (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10
pubmed: 23363705
pmcid: 4053949
doi: 10.1186/gb-2013-14-1-r10
Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613
pubmed: 9741625
doi: 10.1016/S0092-8674(00)81602-5
Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B (2015) Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA 112:E3114–E3122
pubmed: 26038577
pmcid: 4475933
doi: 10.1073/pnas.1508825112
Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225
pubmed: 12663558
pmcid: 1462492
doi: 10.1093/genetics/163.3.1221
Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145
pubmed: 14716315
doi: 10.1038/ng1289
Navrátilová A, Koblízková A, Macas J (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90
pubmed: 18721471
pmcid: 2543021
doi: 10.1186/1471-2229-8-90
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793
pubmed: 23376349
doi: 10.1093/bioinformatics/btt054
Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W, Macas J, Leitch IJ, Leitch AR (2020a) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants 6:1325–1329
pubmed: 33077876
doi: 10.1038/s41477-020-00785-x
Novák P, Neumann P, Macas J (2020b) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15:3745–3776
pubmed: 33097925
doi: 10.1038/s41596-020-0400-y
Paulsen T, Kumar P, Koseoglu MM, Dutta A (2018) Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet 34:270–278
pubmed: 29329720
pmcid: 5881399
doi: 10.1016/j.tig.2017.12.010
Peng H, Mirouze M, Bucher E (2022) Extrachromosomal circular DNA: a neglected nucleic acid molecule in plants. Curr Opin Plant Biol 69:102263
pubmed: 35872391
doi: 10.1016/j.pbi.2022.102263
Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325
pubmed: 24763964
pmcid: 4107277
doi: 10.1007/s00412-014-0462-0
Rychlik W (2007) OLIGO 7 primer analysis software. Methods Mol Biol 402:35–60
pubmed: 17951789
doi: 10.1007/978-1-59745-528-2_2
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:E498–E505
pubmed: 21746892
pmcid: 3158150
doi: 10.1073/pnas.1103190108
Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, Fujiyama A, Fukagawa T (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20:1219–1228
pubmed: 20534883
pmcid: 2928500
doi: 10.1101/gr.106245.110
Sharma A, Wolfgruber TK, Presting GG (2013) Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:142
pubmed: 23452340
pmcid: 3648361
doi: 10.1186/1471-2164-14-142
Shi X, Cao S, Wang X, Huang S, Wang Y, Liu Z, Liu W, Leng X, Peng Y, Wang N, Wang Y, Ma Z, Xu X, Zhang F, Xue H, Zhong H, Wang Y, Zhang K, Velt A, Avia K, Holtgräwe D, Grimplet J, Matus JT, Ware D, Wu X, Wang H, Liu C, Fang Y, Rustenholz C, Cheng Z, Xiao H, Zhou Y (2023) The complete reference genome for grapevine (Vitis vinifera L) genetics and breeding. Hortic Res 10:uhad061
pubmed: 37213686
pmcid: 10199708
doi: 10.1093/hr/uhad061
Strachan T, Webb D, Dover GA (1985) Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J 4:1701–1708
pubmed: 16453627
pmcid: 554406
doi: 10.1002/j.1460-2075.1985.tb03839.x
Talbert P, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326
pubmed: 20231873
pmcid: 2834710
doi: 10.1371/journal.pbio.1000326
Tek AL, Song J, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238
pubmed: 15911575
pmcid: 1451160
doi: 10.1534/genetics.105.041087
Ventura M, Antonacci F, Cardone MF, Stanyon R, D’Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246
pubmed: 17431171
doi: 10.1126/science.1140615
Wang K, Zhang W, Jiang Y, Zhang T (2013) Systematic application of DNA fiber-FISH technique in cotton. PLoS ONE 8:e75674
pubmed: 24086609
pmcid: 3785504
doi: 10.1371/journal.pone.0075674
Wu Y, Kikuchi S, Yan H, Zhang W, Rosenbaum H, Iniguez AL, Jiang J (2011) Euchromatic subdomains in rice centromeres are associated with genes and transcription. Plant Cell 23:4054–4064
pubmed: 22080597
pmcid: 3246336
doi: 10.1105/tpc.111.090043
Xia QM, Miao LK, Xie KD, Yin ZP, Wu XM, Chen CL, Grosser JW, Guo WW (2020) Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. Plant Cell Rep 39:1609–1622
pubmed: 32897396
doi: 10.1007/s00299-020-02587-z
Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238
pubmed: 16272428
pmcid: 1315366
doi: 10.1105/tpc.105.037945
Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J (2008) Intergenic locations of rice centromeric chromatin. PLoS Biol 6:e286
pubmed: 19067486
pmcid: 2586382
doi: 10.1371/journal.pbio.0060286
Yang X, Zhao H, Zhang T, Zeng Z, Zhang P, Zhu B, Han Y, Braz GT, Casler MD, Schmutz J, Jiang J (2018) Amplification and adaptation of centromeric repeats in polyploid switchgrass species. New Phytol 218:1645–1657
pubmed: 29577299
doi: 10.1111/nph.15098
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci USA 110:E4875–E4883
pubmed: 24191062
pmcid: 3864355
doi: 10.1073/pnas.1319548110
Zhang H, Koblížková A, Wang K, Gong Z, Oliveira L, Torres GA, Wu Y, Zhang W, Novák P, Buell CR, Macas J, Jiang J (2014) Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. Plant Cell 26:1436–1447
pubmed: 24728646
pmcid: 4036563
doi: 10.1105/tpc.114.123877
Zhang T, Liu G, Zhao H, Braz GT, Jiang J (2021) Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol J 19:1967–1978
pubmed: 33960617
pmcid: 8486243
doi: 10.1111/pbi.13610
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H (2022) Centromeres: from chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol J 20:2051–2063
pubmed: 35722725
pmcid: 9616519
doi: 10.1111/pbi.13875