Influence of inner ear impedance on middle ear sound transfer functions.
Cochleostomy
Footplate rotation
Inner ear impedance
Middle ear transfer function
Round window stiffness
Journal
Heliyon
ISSN: 2405-8440
Titre abrégé: Heliyon
Pays: England
ID NLM: 101672560
Informations de publication
Date de publication:
30 Mar 2024
30 Mar 2024
Historique:
received:
05
09
2023
revised:
15
12
2023
accepted:
06
03
2024
medline:
25
3
2024
pubmed:
25
3
2024
entrez:
25
3
2024
Statut:
epublish
Résumé
For experimental studies on sound transfer in the middle ear, it may be advantageous to perform the measurements without the inner ear. In this case, it is important to know the influence of inner ear impedance on the middle ear transfer function (METF). Previous studies provide contradictory results in this regard. With the current study, we investigate the influence of inner ear impedance in more detail and find possible reasons for deviations in the previous studies. 11 fresh frozen temporal bones were prepared in our study. The factors related to inner ear impedance, including round window membrane stiffness, cochleostomy, cochlea fluid and cochlea destruction were involved in the experimental design. After measuring in the intact specimen as a reference (step 1), the round window membrane was punctured (step 2), then completely removed (step 3). The cochleostomy was performed (step 4) before the cochlear fluid was carefully suctioned through scala tympani (step 5) and scala vestibuli (step 6). Finally, cochlea was destroyed by drilling (step 7). Translational and rotational movement of the stapes footplate were measured and calculated at each step. The results of the steps were compared to quantify the effect of inner ear impedance changing related to the process of cochlear drainage. As the inner ear impedance decreases from step 1 to 7, the amplitudes of the METF curves at each frequency gradually increase in general. From step 6 on, the measured METF are significantly different with respect to the intact group at high frequencies above 3 kHz. The differences are frequency dependent. However, the significant decrement of rotational motion appears at the frequencies above 4.5 kHz from the step 5. This study confirms the influence of inner ear impedance on METF only at higher frequencies (≥3 kHz). The rotational motions are more sensitive to the drainage of fluid at the higher frequency. Study results that found no influence of cochlea impedance may be due to incomplete drainage of the cochlea.
Identifiants
pubmed: 38524600
doi: 10.1016/j.heliyon.2024.e27758
pii: S2405-8440(24)03789-7
pmc: PMC10958710
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e27758Informations de copyright
© 2024 The Authors.
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.