Single-cell RNA sequencing unveils tumor heterogeneity and immune microenvironment between subungual and plantar melanoma.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Mar 2024
25 Mar 2024
Historique:
received:
12
12
2023
accepted:
20
03
2024
medline:
26
3
2024
pubmed:
26
3
2024
entrez:
26
3
2024
Statut:
epublish
Résumé
Acral melanoma (AM) is a subtype of melanoma with high prevalence in East Asians. AM is characterized by greater aggressiveness and lower survival rates. However, there are still fewer studies on immune mechanisms of AM especially subungual melanoma (SM) versus non-subungual melanoma (NSM). In order to explore tumor heterogeneity and immune microenvironment in different subtypes of AM, we applied single-cell RNA sequencing to 24,789 single cells isolated from the SM and plantar melanoma (PM) patients. Aspects of tumor heterogeneity, melanocytes from PM and SM had significant differences in gene expression, CNV and pathways in which tumor-associated such as NF-kb and Wnt were involved. Regarding the immune microenvironment, PM contained more fibroblasts and T/NK cells. The EPHA3-EFNA1 axis was expressed only in cancer-associated fibroblast (CAF) and melanocytes of PM, and the TIGIT-NECTIN2 axis was expressed in both AM subtypes of T/NK cells and melanocytes. Altogether, our study helps to elucidate the tumor heterogeneity in AM subpopulations and provides potential therapeutic targets for clinical research.
Identifiants
pubmed: 38528036
doi: 10.1038/s41598-024-57640-8
pii: 10.1038/s41598-024-57640-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7039Subventions
Organisme : Medical and Health Science and Technology Planning Project of Zhejiang Province
ID : 2021455749
Organisme : Zhejiang Natural Science Foundation of China
ID : LBZ22H160001
Organisme : Health Science and Technology Projects of Hangzhou
ID : A20220441
Informations de copyright
© 2024. The Author(s).
Références
Augustin, R. C. et al. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. J. Immunother. Cancer https://doi.org/10.1136/jitc-2023-007567 (2023).
doi: 10.1136/jitc-2023-007567
pubmed: 37857525
pmcid: 10603348
Si, L. et al. Prevalence of BRAF V600E mutation in Chinese melanoma patients: Large scale analysis of BRAF and NRAS mutations in a 432-case cohort. Eur. J. Cancer https://doi.org/10.1016/j.ejca.2011.06.056 (2012).
doi: 10.1016/j.ejca.2011.06.056
pubmed: 21788131
Mao, L. et al. Palbociclib in advanced acral melanoma with genetic aberrations in the cyclin-dependent kinase 4 pathway. Eur. J. Cancer 148, 297–306. https://doi.org/10.1016/j.ejca.2021.02.021 (2021).
doi: 10.1016/j.ejca.2021.02.021
pubmed: 33770575
Hodi, F. S. et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J. Clin. Oncol. 31, 3182–3190. https://doi.org/10.1200/JCO.2012.47.7836 (2013).
doi: 10.1200/JCO.2012.47.7836
pubmed: 23775962
pmcid: 4878082
Nakamura, Y. et al. Anti-PD1 checkpoint inhibitor therapy in acral melanoma: A multicenter study of 193 Japanese patients. Ann. Oncol. 31, 1198–1206. https://doi.org/10.1016/j.annonc.2020.05.031 (2020).
doi: 10.1016/j.annonc.2020.05.031
pubmed: 32522691
Guo, J. et al. Empowering therapeutic antibodies with IFN-α for cancer immunotherapy. PLoS ONE 14, e0219829. https://doi.org/10.1371/journal.pone.0219829 (2019).
doi: 10.1371/journal.pone.0219829
pubmed: 31393905
pmcid: 6687177
Newell, F. et al. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nat. Commun. 11, 5259. https://doi.org/10.1038/s41467-020-18988-3 (2020).
doi: 10.1038/s41467-020-18988-3
pubmed: 33067454
pmcid: 7567804
Holman, B. N. et al. Clinical and molecular features of subungual melanomas are site-specific and distinct from acral melanomas. Melanoma Res. 30, 562–573. https://doi.org/10.1097/CMR.0000000000000688 (2020).
doi: 10.1097/CMR.0000000000000688
pubmed: 33156595
Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912. https://doi.org/10.1038/onc.2008.271 (2008).
doi: 10.1038/onc.2008.271
pubmed: 18836471
pmcid: 3689267
Schoepp, M., Ströse, A. J. & Haier, J. Dysregulation of miRNA expression in cancer associated fibroblasts (CAFs) and its consequences on the tumor microenvironment. Cancers (Basel) https://doi.org/10.3390/cancers9060054 (2017).
doi: 10.3390/cancers9060054
pubmed: 28538690
Angell, H. & Galon, J. From the immune contexture to the Immunoscore: The role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25, 261–267. https://doi.org/10.1016/j.coi.2013.03.004 (2013).
doi: 10.1016/j.coi.2013.03.004
pubmed: 23579076
Worboys, J. D. et al. TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation. Nat. Commun. 14, 5016. https://doi.org/10.1038/s41467-023-40755-3 (2023).
doi: 10.1038/s41467-023-40755-3
pubmed: 37596248
pmcid: 10439114
Weulersse, M. et al. Eomes-dependent loss of the co-activating receptor CD226 restrains CD8+ T cell anti-tumor functions and limits the efficacy of cancer immunotherapy. Immunity 53, 824–839. https://doi.org/10.1016/j.immuni.2020.09.006 (2020).
doi: 10.1016/j.immuni.2020.09.006
pubmed: 33053331
Sheppard, K. E. & McArthur, G. A. The cell-cycle regulator CDK4: An emerging therapeutic target in melanoma. Clin. Cancer Res. 19, 5320–5328. https://doi.org/10.1158/1078-0432.CCR-13-0259 (2013).
doi: 10.1158/1078-0432.CCR-13-0259
pubmed: 24089445
Kong, Y. et al. Frequent genetic aberrations in the CDK4 Pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin. Cancer Res. 23, 6946–6957. https://doi.org/10.1158/1078-0432.CCR-17-0070 (2017).
doi: 10.1158/1078-0432.CCR-17-0070
pubmed: 28830923
Rebecca, V. et al. ERK hyperactivation serves as a unified mechanism of escape in intrinsic and acquired CDK4/6 inhibitor resistance in acral lentiginous melanoma. Res. Sq. https://doi.org/10.21203/rs.3.rs-2817876/v1 (2023).
doi: 10.21203/rs.3.rs-2817876/v1
pubmed: 37131684
pmcid: 10153386
Van Hove, L. & Hoste, E. Activation of fibroblasts in skin cancer. J. Invest. Dermatol. 142, 1026–1031. https://doi.org/10.1016/j.jid.2021.09.010 (2022).
doi: 10.1016/j.jid.2021.09.010
pubmed: 34600919
Talia, M. et al. The Ephrin tyrosine kinase a3 (EphA3) is a novel mediator of RAGE-prompted motility of breast cancer cells. J. Exp. Clin. Cancer Res. 42, 164. https://doi.org/10.1186/s13046-023-02747-5 (2023).
doi: 10.1186/s13046-023-02747-5
pubmed: 37434266
pmcid: 10337103
Vail, M. E. et al. Inhibition of EphA3 expression in tumour stromal cells suppresses tumour growth and progression. Cancers (Basel) 15, 4646. https://doi.org/10.3390/cancers15184646 (2023).
doi: 10.3390/cancers15184646
pubmed: 37760615
Miao, H. et al. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene 34, 558–567. https://doi.org/10.1038/onc.2013.590 (2015).
doi: 10.1038/onc.2013.590
pubmed: 24488013
Nakamura, R. et al. EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci. 96, 42–47 (2005).
doi: 10.1111/j.1349-7006.2005.00007.x
pubmed: 15649254
Shi, Z.-Z. et al. Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridization. BMC Med. Genom. 5, 52. https://doi.org/10.1186/1755-8794-5-52 (2012).
doi: 10.1186/1755-8794-5-52
Toma, M. I. et al. Lack of ephrin receptor A1 is a favorable independent prognostic factor in clear cell renal cell carcinoma. PLoS ONE 9, e102262. https://doi.org/10.1371/journal.pone.0102262 (2014).
doi: 10.1371/journal.pone.0102262
pubmed: 25025847
pmcid: 4099180
Miyazaki, K. et al. EphA4 is a prognostic factor in gastric cancer. BMC Clin. Pathol. 13, 19. https://doi.org/10.1186/1472-6890-13-19 (2013).
doi: 10.1186/1472-6890-13-19
pubmed: 23738943
pmcid: 3720259
Tang, W., Chen, J., Ji, T. & Cong, X. TIGIT, a novel immune checkpoint therapy for melanoma. Cell Death Dis. 14, 466. https://doi.org/10.1038/s41419-023-05961-3 (2023).
doi: 10.1038/s41419-023-05961-3
pubmed: 37495610
pmcid: 10372028
Xu, K. et al. Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 10, 66. https://doi.org/10.1038/s41389-021-00355-6 (2021).
doi: 10.1038/s41389-021-00355-6
pubmed: 34611125
pmcid: 8492772
Takamatsu, K. et al. Profiling the inhibitory receptors LAG-3, TIM-3, and TIGIT in renal cell carcinoma reveals malignancy. Nat. Commun 12, 5547. https://doi.org/10.1038/s41467-021-25865-0 (2021).
doi: 10.1038/s41467-021-25865-0
pubmed: 34545095
pmcid: 8452744
Sun, Y. et al. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int. Immunopharmacol. 80, 106198. https://doi.org/10.1016/j.intimp.2020.106198 (2020).
doi: 10.1016/j.intimp.2020.106198
pubmed: 31954274
Liu, X. et al. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol. Immunother. 68, 2041–2054. https://doi.org/10.1007/s00262-019-02426-5 (2019).
doi: 10.1007/s00262-019-02426-5
pubmed: 31720814
Ma, J. Bioinformatics-guided analysis uncovers TIGIT as an epigenetically regulated immunomodulator affecting immunotherapeutic sensitivity of gastric cancer. Cancer Biomark. 33, 349–358. https://doi.org/10.3233/CBM-210159 (2022).
doi: 10.3233/CBM-210159
pubmed: 34511485
Yang, Z.-Z. et al. TIGIT expression is associated with t-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma. Clin. Cancer Res. 26, 5217–5231. https://doi.org/10.1158/1078-0432.CCR-20-0558 (2020).
doi: 10.1158/1078-0432.CCR-20-0558
pubmed: 32631956
Shaffer, T., Natarajan, A. & Gambhir, S. S. PET imaging of TIGIT expression on tumor-infiltrating lymphocytes. Clin. Cancer Res. 27, 1932–1940. https://doi.org/10.1158/1078-0432.CCR-20-2725 (2021).
doi: 10.1158/1078-0432.CCR-20-2725
pubmed: 33408249
Zhang, J.-A. et al. Development of an immune-related gene signature for prognosis in melanoma. Front. Oncol. 10, 602555. https://doi.org/10.3389/fonc.2020.602555 (2020).
doi: 10.3389/fonc.2020.602555
pubmed: 33585219
Farrow, N. E. et al. Characterization of sentinel lymph node immune signatures and implications for risk stratification for adjuvant therapy in melanoma. Ann. Surg. Oncol. 28, 3501–3510. https://doi.org/10.1245/s10434-020-09277-w (2021).
doi: 10.1245/s10434-020-09277-w
pubmed: 33205334
Inozume, T. et al. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J. Invest. Dermatol. 136, 255–263. https://doi.org/10.1038/JID.2015.404 (2016).
doi: 10.1038/JID.2015.404
pubmed: 26763445
Joller, N. et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186, 1338–1342. https://doi.org/10.4049/jimmunol.1003081 (2011).
doi: 10.4049/jimmunol.1003081
pubmed: 21199897
Liu, S. et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 20, 456–464. https://doi.org/10.1038/cdd.2012.141 (2013).
doi: 10.1038/cdd.2012.141
pubmed: 23154388
Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581. https://doi.org/10.1016/j.immuni.2014.02.012 (2014).
doi: 10.1016/j.immuni.2014.02.012
pubmed: 24745333
pmcid: 4070748
Fourcade, J. et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight https://doi.org/10.1172/jci.insight.121157 (2018).
doi: 10.1172/jci.insight.121157
pubmed: 30046006
pmcid: 6124410
Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 188, 3869–3875. https://doi.org/10.4049/jimmunol.1103627 (2012).
doi: 10.4049/jimmunol.1103627
pubmed: 22427644
Du, X. et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc. Natl. Acad. Sci. U. S. A. 115, E11731–E11740. https://doi.org/10.1073/pnas.1814052115 (2018).
doi: 10.1073/pnas.1814052115
pubmed: 30504141
pmcid: 6294892
Rishiq, A., Bsoul, R., Pick, O. & Mandelboim, O. Studying TIGIT activity against tumors through the generation of knockout mice. Oncoimmunology 12, 2217735. https://doi.org/10.1080/2162402X.2023.2217735 (2023).
doi: 10.1080/2162402X.2023.2217735
pubmed: 37261087
pmcid: 10228407
Li, J. et al. Single-cell characterization of the cellular landscape of acral melanoma identifies novel targets for immunotherapy. Clin. Cancer Res. 28, 2131–2146. https://doi.org/10.1158/1078-0432.CCR-21-3145 (2022).
doi: 10.1158/1078-0432.CCR-21-3145
pubmed: 35247927
pmcid: 9106889