DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism.


Journal

European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235

Informations de publication

Date de publication:
25 Mar 2024
Historique:
received: 23 11 2023
accepted: 13 03 2024
revised: 05 03 2024
medline: 26 3 2024
pubmed: 26 3 2024
entrez: 26 3 2024
Statut: aheadofprint

Résumé

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.

Identifiants

pubmed: 38528056
doi: 10.1038/s41431-024-01597-9
pii: 10.1038/s41431-024-01597-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ministero della Salute (Ministry of Health, Italy)
ID : 5x1000_2019
Organisme : Ministero della Salute (Ministry of Health, Italy)
ID : RCR-2022-23682289
Organisme : Ministero della Salute (Ministry of Health, Italy)
ID : Current Research Funds
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
ID : FOE_2020

Informations de copyright

© 2024. The Author(s), under exclusive licence to European Society of Human Genetics.

Références

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.
pubmed: 27346641 doi: 10.1038/nrg.2016.59
Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet. 2019;28:R254–64.
pubmed: 31595951 pmcid: 6872430 doi: 10.1093/hmg/ddz174
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet. 2023;23:1–18.
Niikawa N, Matsuura N, Fukushima Y, Ohsawa T, Kajii T. Kabuki make-up syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency. J Pediatr. 1981;99:565–9.
pubmed: 7277096 doi: 10.1016/S0022-3476(81)80255-7
Adam MP, Hudgins L, Hannibal M. Kabuki syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. editors. GeneReviews [Internet]. Seattle (WA): University of Washington 2011; p. 1993–2023. (updated 2022).
Makrythanasis P, van Bon BW, Steehouwer M, Rodríguez-Santiago B, Simpson M, Dias P, et al. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study. Clin Genet. 2013;84:539–45.
pubmed: 23320472 doi: 10.1111/cge.12081
Priestley JRC, Rippert AL, Condit C, Izumi K, Kallish S, Drivas TG. Unmasking the challenges of Kabuki syndrome in adulthood: A case series. Am J Med Genet C Semin Med Genet. 2023;193:128–38.
pubmed: 37296540 doi: 10.1002/ajmg.c.32054
Adam MP, Banka S, Bjornsson HT, Bodamer O, Chudley AE, Harris J, et al. Kabuki syndrome: international consensus diagnostic criteria. J Med Genet. 2019;56:89–95.
pubmed: 30514738 doi: 10.1136/jmedgenet-2018-105625
Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.
pubmed: 20711175 pmcid: 2930028 doi: 10.1038/ng.646
Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, et al. Structural basis for activity regulation of MLL family methyltransferases. Nature. 2016;530:447–52.
pubmed: 26886794 pmcid: 5125619 doi: 10.1038/nature16952
Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012;90:119–24.
pubmed: 22197486 pmcid: 3257878 doi: 10.1016/j.ajhg.2011.11.021
Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217–22.
pubmed: 30872525 pmcid: 7336390 doi: 10.1126/science.aaw1026
Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318:447–50.
pubmed: 17761849 doi: 10.1126/science.1149042
Bögershausen N, Gatinois V, Riehmer V, Kayserili H, Becker J, Thoenes M, et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X-linked Kabuki syndrome subtype 2. Hum Mutat. 2016;37:847–64.
pubmed: 27302555 doi: 10.1002/humu.23026
Li Y, Bögershausen N, Alanay Y, Simsek Kiper PO, Plume N, Keupp K, et al. A mutation screen in patients with Kabuki syndrome. Hum Genet. 2011;130:715–24.
pubmed: 21607748 doi: 10.1007/s00439-011-1004-y
Faundes V, Malone G, Newman WG, Banka S. A comparative analysis of KMT2D missense variants in Kabuki syndrome, cancers and the general population. J Hum Genet. 2019;64:161–70.
pubmed: 30459467 doi: 10.1038/s10038-018-0536-6
Banka S, Veeramachaneni R, Reardon W, Howard E, Bunstone S, Ragge N, et al. How genetically heterogeneous is Kabuki syndrome? MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum. Eur J Hum Genet. 2012;20:381–8.
pubmed: 22126750 doi: 10.1038/ejhg.2011.220
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
pubmed: 25741868 pmcid: 4544753 doi: 10.1038/gim.2015.30
Banka S, Howard E, Bunstone S, Chandler KE, Kerr B, Lachlan K, et al. MLL2 mosaic mutations and intragenic deletion-duplications in patients with Kabuki syndrome. Clin Genet. 2013;83:467–71.
pubmed: 22901312 doi: 10.1111/j.1399-0004.2012.01955.x
Lepri FR, Cocciadiferro D, Augello B, Alfieri P, Pes V, Vancini A, et al. Clinical and neurobehavioral features of three novel Kabuki syndrome patients with mosaic KMT2D mutations and a review of literature. Int J Mol Sci. 2017;19:82.
pubmed: 29283410 pmcid: 5796032 doi: 10.3390/ijms19010082
Montano C, Britton JF, Harris JR, Kerkhof J, Barnes BT, Lee JA, et al. Genome-wide DNA methylation profiling confirms a case of low-level mosaic Kabuki syndrome 1. Am J Med Genet A. 2022;188:2217–25.
pubmed: 35384273 pmcid: 9321966 doi: 10.1002/ajmg.a.62754
Kawai T, Iwasaki Y, Ogata-Kawata H, Kamura H, Nakamura K, Hata K, et al. Identification of a KDM6A somatic mutation responsible for Kabuki syndrome by excluding a conflicting KMT2D germline variant through episignature analysis. Eur J Med Genet. 2023;66:104806.
pubmed: 37379880 doi: 10.1016/j.ejmg.2023.104806
Fernandez F, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H, et al. A DNA methylation fingerprint of 1628 human samples. Genome Res. 2012;22:407–19.
pubmed: 21613409 pmcid: 3266047 doi: 10.1101/gr.119867.110
Chater-Diehl E, Goodman SJ, Cytrynbaum C, Turinsky AL, Choufani S, Weksberg R. Anatomy of DNA methylation signatures: emerging insights and applications. Am J Hum Genet. 2021;108:1359–66.
pubmed: 34297908 pmcid: 8387466 doi: 10.1016/j.ajhg.2021.06.015
Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, et al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am J Hum Genet. 2019;104:685–700.
pubmed: 30929737 pmcid: 6451739 doi: 10.1016/j.ajhg.2019.03.008
Aref-Eshghi E, Kerkhof J, Pedro VP, Groupe DI France, Barat-Houari M, Ruiz-Pallares N, et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am J Hum Genet. 2020;106:356–70.
pubmed: 32109418 pmcid: 7058829 doi: 10.1016/j.ajhg.2020.01.019
Sadikovic B, Levy MA, Kerkhof J, Aref-Eshghi E, Schenkel L, Stuart A, et al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Gen Med. 2021;23:1065–74.
Ciolfi A, Aref-Eshghi E, Pizzi S, Pedace L, Miele E, Kerkhof J, et al. Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature. Clin Epigenet. 2020;12:7.
doi: 10.1186/s13148-019-0804-0
Ciolfi A, Foroutan A, Capuano A, Pedace L, Travaglini L, Pizzi S, et al. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin Epigenet. 2021;13:157.
doi: 10.1186/s13148-021-01145-y
Pagliara D, Ciolfi A, Pedace L, Haghshenas S, Ferilli M, Levy MA, et al. Identification of a robust DNA methylation signature for Fanconi anemia. Am J Hum Genet. 2023;110:1938–49.
pubmed: 37865086 doi: 10.1016/j.ajhg.2023.09.014
Butcher DT, Cytrynbaum C, Turinsky AL, Siu MT, Inbar-Feigenberg M, Mendoza-Londono R, et al. CHARGE and Kabuki syndromes: gene-specific DNA Methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions. Am J Hum Genet. 2017;100:773–88.
pubmed: 28475860 pmcid: 5420353 doi: 10.1016/j.ajhg.2017.04.004
Oexle K, Zech M, Stühn LG, Siegert S, Brunet T, Schmidt WM, et al. Episignature analysis of moderate effects and mosaics. Eur J Hum Genet. 2023;31:1032–39.
pubmed: 37365401 pmcid: 10474287 doi: 10.1038/s41431-023-01406-9
Dentici ML, Di Pede A, Lepri FR, Gnazzo M, Lombardi MH, Auriti C, et al. Kabuki syndrome: clinical and molecular diagnosis in the first year of life. Arch Dis Child. 2015;100:158–64.
pubmed: 25281733 doi: 10.1136/archdischild-2013-305858
Hildonen M, Ferilli M, Hjortshøj TD, Dunø M, Risom L, Bak M, et al. DNA methylation signature classification of rare disorders using publicly available methylation data. Clin Genet. 2023;103:688–92.
pubmed: 36705342 doi: 10.1111/cge.14304
Paderova J, Drabova J, Holubova A, Vlckova M, Havlovicova M, Gregorova A, et al. Under the mask of Kabuki syndrome: elucidation of genetic-and phenotypic heterogeneity in patients with Kabuki-like phenotype. Eur J Med Genet. 2018;61:315–21.
pubmed: 29307790 doi: 10.1016/j.ejmg.2018.01.005
Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33:3982–84.
pubmed: 28961746 pmcid: 5860089 doi: 10.1093/bioinformatics/btx513
Fortin JP, Triche TJ Jr, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:558–60.
pubmed: 28035024 doi: 10.1093/bioinformatics/btw691
Taft LM, Evans RS, Shyu CR, Egger MJ, Chawla N, Mitchell JA, et al. Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery. J Biomed Inf. 2009;42:356–64.
doi: 10.1016/j.jbi.2008.09.001
Cocciadiferro D, Augello B, De Nittis P, Zhang J, Mandriani B, Malerba N, et al. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum Mol Genet. 2018;27:3651–68.
pubmed: 30107592 pmcid: 6488975 doi: 10.1093/hmg/ddy241
Giuili E, Grolaux R, Macedo CZNM, Desmyter L, Pichon B, Neuens S, et al. Comprehensive evaluation of the implementation of episignatures for diagnosis of neurodevelopmental disorders (NDDs). Hum Genet. 2023;142:1721–35.
pubmed: 37889307 pmcid: 10676303 doi: 10.1007/s00439-023-02609-2
Halvorsen M, Petrovski S, Shellhaas R, Tang Y, Crandall L, Goldstein D, et al. Mosaic mutations in early-onset genetic diseases. Genet Med. 2016;18:746–9.
pubmed: 26716362 doi: 10.1038/gim.2015.155
Murakami H, Tsurusaki Y, Enomoto K, Kuroda Y, Yokoi T, Furuya N, et al. Update of the genotype and phenotype of KMT2D and KDM6A by genetic screening of 100 patients with clinically suspected Kabuki syndrome. Am J Med Genet A. 2020;182:2333–44.
pubmed: 32803813 doi: 10.1002/ajmg.a.61793
Manheimer KB, Richter F, Edelmann LJ, D’Souza SL, Shi L, Shen Y, et al. Robust identification of mosaic variants in congenital heart disease. Hum Genet. 2018;137:183–93.
pubmed: 29417219 pmcid: 5997246 doi: 10.1007/s00439-018-1871-6
Aref-Eshghi E, Bourque DK, Kerkhof J, Carere DA, Ainsworth P, Sadikovic B, et al. Genome-wide DNA methylation and RNA analyses enable reclassification of two variants of uncertain significance in a patient with clinical Kabuki syndrome. Hum Mutat. 2019;40:1684–9.
pubmed: 31268616 doi: 10.1002/humu.23833

Auteurs

Marcello Niceta (M)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Andrea Ciolfi (A)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Marco Ferilli (M)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
Department of Computer, Control and Management Engineering, Sapienza University, 00185, Rome, Italy.

Lucia Pedace (L)

Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.

Camilla Cappelletti (C)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Claudia Nardini (C)

Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.

Mathis Hildonen (M)

Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark.

Luigi Chiriatti (L)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Evelina Miele (E)

Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.

Maria Lisa Dentici (ML)

Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Maria Gnazzo (M)

Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Claudia Cesario (C)

Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Elisa Pisaneschi (E)

Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Anwar Baban (A)

Pediatric Cardiology and Cardiac Arrhythmias Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Antonio Novelli (A)

Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Silvia Maitz (S)

Genetica Clinica Pediatrica, Fondazione MBBM, ASST Monza Ospedale San Gerardo, 20900, Monza, Italy.

Angelo Selicorni (A)

Pediatria, Ospedale Sant'Anna, ASST Lariana, 22100, Como, Italy.

Gabriella Maria Squeo (GM)

Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy.

Giuseppe Merla (G)

Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy.
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.

Bruno Dallapiccola (B)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Zeynep Tumer (Z)

Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark.
Department of Clinical Medicine, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.

Maria Cristina Digilio (MC)

Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.

Manuela Priolo (M)

Medical and Laboratory Genetics, Antonio Cardarelli Hospital, 80131, Naples, Italy.

Marco Tartaglia (M)

Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy. marco.tartaglia@opbg.net.

Classifications MeSH