Visualization of bone formation in sheep's middle ear by using fluorochrome sequential labelling (FSL).
Bone formation
Fluorochrome sequence labelling
Mammalian middle ear
Osseoregenerative process
Stapes footplate
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Mar 2024
25 Mar 2024
Historique:
received:
14
04
2023
accepted:
20
03
2024
medline:
26
3
2024
pubmed:
26
3
2024
entrez:
26
3
2024
Statut:
epublish
Résumé
One factor for the lacking integration of the middle ear stapes footplate prosthesis or the missing healing of stapes footplate fractures could be the known osteogenic inactivity. In contrast, it was recently demonstrated that titanium prostheses with an applied collagen matrix and immobilised growth factors stimulate osteoblastic activation and differentiation on the stapes footplate. Regarding those findings, the aim of this study was to evaluate the potential of bone regeneration including bone remodeling in the middle ear. Ten one-year-old female merino sheep underwent a middle ear surgery without implantation of middle ear prostheses or any other component for activating bone formation. Post-operatively, four fluorochromes (tetracycline, alizarin complexion, calcein green and xylenol orange) were administered by subcutaneous injection at different time points after surgery (1 day: tetracycline, 7 days: alizarin, 14 days: calcein, 28 days: xylenol). After 12 weeks, the temporal bones including the lateral skull base were extracted and histologically analyzed. Fluorescence microscopy analysis of the entire stapes with the oval niche, but in particular stapes footplate and the Crura stapedis revealed evidence of new bone formation. Calcein was detected in all and xylenol in 60% of the animals. In contrast, tetracycline and alizarin could only be verified in two animals. The authors were able to demonstrate the osseoregenerative potential of the middle ear, in particular of the stapes footplate, using fluorescence sequence labelling.
Identifiants
pubmed: 38528064
doi: 10.1038/s41598-024-57630-w
pii: 10.1038/s41598-024-57630-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7046Informations de copyright
© 2024. The Author(s).
Références
Hüttenbrink, K.-B., Zahnert, T., Beutner, D. & Hofmann, G. The cartilage guide: a solution for anchoring a columella-prosthesis on footplate. Laryngo-Rhino-Otol 83, 450–456 (2004).
doi: 10.1055/s-2004-814447
Beutner, D., Luers, J. C. & Huttenbrink, K. B. Cartilage ‘shoe’: A new technique for stabilisation of titanium total ossicular replacement prosthesis at centre of stapes footplate. J. Laryngol. Otol. 122, 682–686 (2008).
doi: 10.1017/S0022215108002545
pubmed: 18485257
Schmid, G., Steinhardt, U. & Heckmann, W. The omega connector—A module for jointed coupling of titanium total prostheses in the middle ear. Laryngorhinootologie 88, 782–788 (2009).
doi: 10.1055/s-0029-1231047
pubmed: 19639531
Mantei, T. et al. Ossiculoplasty with total ossicular replacement prosthesis and Omega Connector: Early clinical results and functional measurements. Otol. Neurotol. 32, 1102–1107 (2011).
doi: 10.1097/MAO.0b013e3182267e3b
pubmed: 21730881
Neudert, M. et al. Osseointegration of prostheses on the stapes footplate: evaluation of the biomechanical feasibility by using a finite element model. J. Assoc. Res. Otolaryngol. 8, 411–421 (2007).
doi: 10.1007/s10162-007-0094-7
pubmed: 17828428
pmcid: 2538349
Neudert, M. et al. Osseointegration of titanium prostheses on the stapes footplate. J. Assoc. Res. Otolaryngol. 11, 161–171 (2010).
doi: 10.1007/s10162-009-0202-y
pubmed: 20066460
pmcid: 2862917
Hüttenbrink, K.-B. Die operative Therapie der chronischen Otitis media. I-III. HNO 42, 582–593, 648–657, 701–718 (1994).
Ozeki-Satoh, M., Ishikawa, A., Yamada, S., Uwabe, C. & Takakuwa, T. Morphogenesis of the middle ear ossicles and spatial relationships with the external and inner ears during the embryonic period. Anat. Rec. 299, 1325–1337 (2016).
doi: 10.1002/ar.23457
Does, I. E. & Bottema, T. Posttraumatic conductive hearing loss. Arch. Otolaryngol. (Chicago, Ill. : 1960) 82, 331–339 (1965).
Van den Eeckhaut, J. [Pathogenesis and evolution of ossicular fractures. Experimental and clinical principles]. Acta oto-rhino-laryngologica Belgica 23, 33–54 (1969).
Guerrier, Y. Surgical and functional anatomy of the base of the skull: middle and posterior sections (author’s transl). Annales d’oto-laryngologie et de chirurgie cervico faciale: bulletin de la Societe d’oto-laryngologie des hopitaux de Paris 98, 161–169 (1981).
pubmed: 7325511
Guerrier, B. & Peringuey, J. [Anatomy of the footplate of the stapes]. Journal francais d’oto-rhino-laryngologie; audiophonologie, chirurgie maxillo-faciale 31, 679–683 (1982).
Strohm, M. Trauma of the middle ear. Clinical findings, postmortem observations and results of experimental studies. Adv. Oto-Rhino-Laryngol. 35 (1986).
Strohm, M. Traumatologie Des Ohres. vol. Band 1: Ohr (Naumann HH, 1993).
Strohm, M. Reconstruction of the upper stapes. HNO 50, 1041–1044 (2002).
doi: 10.1007/s00106-002-0761-2
pubmed: 12474124
Sudhoff, H., Lindner, N., Gronemeyer, J., Dazert, S. & Hildmann, H. Study of osteointegration of a titanium prosthesis to the stapes: observations on an accidentally extracted stapes. Otol. Neurotol. 26, 583–586 (2005).
doi: 10.1097/01.mao.0000178118.38667.9b
pubmed: 16015150
Devesa, P. M., Michaels, L. & Wright, A. Ossicular fixation caused by bone dust after saccus decompression surgery. Otol. Neurotol. 23, 949–951; discussion 951–952 (2002).
Frost, H. M., Villanueva, A. R., Roth, H. & Stanisavljevic, S. Tetracycline bone labeling. J. New Drugs 1, 206–216 (1961).
doi: 10.1177/009127006100100503
pubmed: 13895540
Frost, H. M. Tetracycline-based histological analysis of bone remodeling. Calcif. Tissue Res. 3, 211–237 (1969).
doi: 10.1007/BF02058664
pubmed: 4894738
Roldán, J. C. et al. Bone formation in the presence of platelet-rich plasma vs. bone morphogenetic protein-7. Bone 34, 80–90 (2004).
doi: 10.1016/j.bone.2003.09.011
pubmed: 14751565
Follak, N., Klöting, I., Wolf, E. & Merk, H. Histomorphometric evaluation of the influence of the diabetic metabolic state on bone defect healing depending on the defect size in spontaneously diabetic BB/OK rats. Bone 35, 144–152 (2004).
doi: 10.1016/j.bone.2004.03.011
pubmed: 15207750
Dumont, C. et al. Long-term effects of saw osteotomy versus random fracturing on bone healing and remodeling in a sheep tibia model. J. Orthop. Res. 27, 680–686 (2009).
doi: 10.1002/jor.20795
pubmed: 18988260
Li, Z. & Li, Z.-B. Mandibular condylar growth in growing rats after experimentally displaced condylar fracture with associated attachment damage and disc displacement: An observation by polychrome sequential labeling. J. Oral Maxillofac. Surg. 70, 896–901 (2012).
doi: 10.1016/j.joms.2011.10.018
pubmed: 22265165
Martins, R. et al. Osseointegration of zirconia and titanium implants in a rabbit tibiae model evaluated by microtomography, histomorphometry and fluorochrome labeling analyses. J. Periodontal Res. 53, 210–221 (2018).
doi: 10.1111/jre.12508
pubmed: 29044523
Benske, J., Schünke, M. & Tillmann, B. Polychrome Sequenzmarkierung des subchondralen Knochengewebes in frühen und fortgeschrittenen Stadien der Gonarthrose von männlichen STR/IN-Mäusen. Z Orthop Ihre Grenzgeb 127, 616–619 (1989).
doi: 10.1055/s-2008-1040301
pubmed: 2596155
Kunert-Keil, C. et al. Morphological evaluation of bone defect regeneration after treatment with two different forms of bone substitution materials on the basis of bonitmatrix®. J. Physiol. Pharmacol. 60, 57–60 (2009).
pubmed: 20400793
Kunert-Keil, C. et al. Socket augmentation using a commercial collagen-based product—An animal study in pigs. Mater. Sci. Eng. C 46, 177–183 (2015).
doi: 10.1016/j.msec.2014.10.033
Korn, P. et al. Application of tissue-engineered bone grafts for alveolar cleft osteoplasty in a rodent model. Clin. Oral Investig. 21, 2521–2534 (2017).
doi: 10.1007/s00784-017-2050-1
pubmed: 28101680
Dost, Ph. Biomaterials in reconstructive middle ear surgery. Laryngo-Rhino-Otol 79, 53–72 (2000).
doi: 10.1055/s-2000-15918
Reide, W., Dost, P., Mißfeldt, N., Heine, J. & Jahnke, K. Stapesoberbaurekonstruktion mit bioaktiven Keramiken. HNO 41, 131–134 (1993).
pubmed: 8386153
Dost, P., Missfeldt, N., Reide, W. & Jahnke, K. Experimental results concerning the reconstruction of the stapes superstructure with bioactive ceramics. Revue de laryngology otologie rhinologie 116, 133–136 (1995).
Schmid, S., Felix, H. & Böhmer, A. Histological study of the binding of Polycel and Ceravital implants to the stapes footplate in rabbits. HNO 36, 221–225 (1988).
pubmed: 3410757
van Gaalen, S. M. et al. Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng. Part B Rev. 16, 209–217 (2010).
doi: 10.1089/ten.teb.2009.0503
pubmed: 19857045
Donath, K. & Breuner, G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J. Oral Pathol. 11, 318–326 (1982).
doi: 10.1111/j.1600-0714.1982.tb00172.x
pubmed: 6809919
Schliephake, H. et al. Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible. J. Biomed. Mater. Res. Part A 64A, 225–234 (2002).
doi: 10.1002/jbm.a.10363
Canullo, L., Heinemann, F., Gedrange, T., Biffar, R. & Kunert-Keil, C. Histological evaluation at different times after augmentation of extraction sites grafted with a magnesium-enriched hydroxyapatite: double-blinded randomized controlled trial. Clin. Oral Implants Res. 24, 398–406 (2013).
doi: 10.1111/clr.12035
pubmed: 22998494
Katzke, D., Steinbach, E. & Schödermaier, C. Zur Ursache der Wiederentfernung allogener Anstoßtransplantate. Arch. Otorhinolaryngol. 235, 525–528 (1982).
doi: 10.1007/BF00459905
Smyth, G. D. L. Torps: How have they fared after five years?. J. Laryng. Otol. 97, 991–993 (1983).
doi: 10.1017/S0022215100095876
Rosowski, J. J. Mechanisms of sound conduction in normal and diseased ears. in Second International Symposium on Middle-Ear Mechanics in Research and Otosurgery (eds. Rosowski, J. & Merchant, S.) 137–145 (Kugler Publications, The Hague, The Netherlands, Boston MA, USA, 1999, 2000).
Frisch, T., Overgaard, S., Sørensen, M. S. & Bretlau, P. Estimation of volume referent bone turnover in the otic capsule after sequential point labeling. Ann. Otol. Rhinol. Laryngol. 109, 33–39 (2000).
doi: 10.1177/000348940010900106
pubmed: 10651409
Turner, A. S. The sheep as a model for osteoporosis in humans. Vet. J. 1997(163), 232–239 (2002).
doi: 10.1053/tvjl.2001.0642
Sigrist, I. M., Gerhardt, C., Alini, M., Schneider, E. & Egermann, M. The long-term effects of ovariectomy on bone metabolism in sheep. J. Bone Miner Metab. 25, 28–35 (2007).
doi: 10.1007/s00774-006-0724-x
pubmed: 17187191
Nuss, K. M. R., Auer, J. A., Boos, A. & von Rechenberg, B. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones. BMC Musculoskelet. Disord. 7, 67–67 (2006).
doi: 10.1186/1471-2474-7-67
pubmed: 16911787
pmcid: 1578562
Cancedda, R., Giannoni, P. & Mastrogiacomo, M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28, 4240–4250 (2007).
doi: 10.1016/j.biomaterials.2007.06.023
pubmed: 17644173
Pautke, C. et al. New advances in fluorochrome sequential labelling of teeth using seven different fluorochromes and spectral image analysis. J. Anat. 210, 117–121 (2007).
doi: 10.1111/j.1469-7580.2006.00660.x
pubmed: 17229289
pmcid: 2100254
Österle, F. Über den Feinbau der Gehörknöchelchen und seine Entstehung. Arch. f. Ohren-, Nasen- und Kehlkopfheilkunde 135, 311–327 (1933).
Neudert, M. et al. Histologische Untersuchungen zum Aufbau der Steigbügelfußplatte. in (Heidelberg, 2018).