The reproduction process of Gram-positive protocells.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Mar 2024
25 Mar 2024
Historique:
received:
10
10
2023
accepted:
18
03
2024
medline:
26
3
2024
pubmed:
26
3
2024
entrez:
26
3
2024
Statut:
epublish
Résumé
Protocells are believed to have existed on early Earth prior to the emergence of prokaryotes. Due to their rudimentary nature, it is widely accepted that these protocells lacked intracellular mechanisms to regulate their reproduction, thereby relying heavily on environmental conditions. To understand protocell reproduction, we adopted a top-down approach of transforming a Gram-positive bacterium into a lipid-vesicle-like state. In this state, cells lacked intrinsic mechanisms to regulate their morphology or reproduction, resembling theoretical propositions on protocells. Subsequently, we grew these proxy-protocells under the environmental conditions of early Earth to understand their impact on protocell reproduction. Despite the lack of molecular biological coordination, cells in our study underwent reproduction in an organized manner. The method and the efficiency of their reproduction can be explained by an interplay between the physicochemical properties of cell constituents and environmental conditions. While the overall reproductive efficiency in these top-down modified cells was lower than their counterparts with a cell wall, the process always resulted in viable daughter cells. Given the simplicity and suitability of this reproduction method to early Earth environmental conditions, we propose that primitive protocells likely reproduced by a process like the one we described below.
Identifiants
pubmed: 38528088
doi: 10.1038/s41598-024-57369-4
pii: 10.1038/s41598-024-57369-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7075Subventions
Organisme : European Research Council
ID : 616644
Pays : International
Informations de copyright
© 2024. The Author(s).
Références
Oparin, A. I. Chemistry and the origin of life. R. Inst. Chem. Rev. https://doi.org/10.1039/rr9690200001 (1969).
doi: 10.1039/rr9690200001
Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).
pubmed: 13056598
doi: 10.1126/science.117.3046.528
Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8659–8661 (2018).
doi: 10.1021/jacs.8b05189
Liu, Z. et al. Prebiotic photoredox synthesis from carbon dioxide and sulfite. Nat. Chem. 13, 1126–1132 (2021).
pubmed: 34635812
pmcid: 7611910
doi: 10.1038/s41557-021-00789-w
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387 (2001).
pubmed: 11201752
doi: 10.1038/35053176
Chen, I. A., Salehi-Ashtiani, K. & Szostak, J. W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc. 127, 13213–13219 (2005).
pubmed: 16173749
pmcid: 5072289
doi: 10.1021/ja051784p
Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J Am Chem Soc. 131, 5705–5713 (2009).
pubmed: 19323552
pmcid: 2669828
doi: 10.1021/ja900919c
Navarro, P. P. et al. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat. Microbiol. 7, 1621–1634 (2022).
pubmed: 36097171
pmcid: 9519445
doi: 10.1038/s41564-022-01210-z
Eswara, P. J. & Ramamurthi, K. S. Bacterial cell division: Nonmodels poised to take the spotlight. Annu. Rev. Microbiol. 71, 393–411 (2017).
pubmed: 28697666
pmcid: 6291244
doi: 10.1146/annurev-micro-102215-095657
Kudella, P. W. et al. Fission of lipid-vesicles by membrane phase transitions in thermal convection. Sci. Rep. 9, 18808 (2019).
pubmed: 31827164
pmcid: 6906453
doi: 10.1038/s41598-019-55110-0
Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302, 618–622 (2003).
pubmed: 14576428
pmcid: 4484575
doi: 10.1126/science.1089904
Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl. Acad. Sci. 108, 5249–5254 (2011).
pubmed: 21402937
pmcid: 3069173
doi: 10.1073/pnas.1100498108
Wu, L. J. et al. Geometric principles underlying the proliferation of a model cell system. Nat. Commun. 11, 4149 (2020).
pubmed: 32811832
pmcid: 7434903
doi: 10.1038/s41467-020-17988-7
Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009).
pubmed: 19212404
doi: 10.1038/nature07742
Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).
pubmed: 23303308
pmcid: 3603455
doi: 10.1098/rsob.120143
Kanaparthi, D. et al. On the reproductive mechanism of Gram-negative protocells. bioRxiv 2021.11.25.470037 https://doi.org/10.1101/2021.11.25.470037 (2021).
Blake, R. E., Chang, S. J. & Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1032 (2010).
pubmed: 20393560
doi: 10.1038/nature08952
Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax142 (2020).
doi: 10.1126/sciadv.aax1420
Knauth, L. P. Salinity history of the Earth’s early ocean. Nature 395, 554–555 (1998).
pubmed: 11542867
doi: 10.1038/26879
Alleon, J. et al. Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochem. Perspect. Lett. 7, 37–42 (2018).
doi: 10.7185/geochemlet.1817
Walsh, M. W. Microfossils and possible microfossils from the early Archean Onverwacht group, Barberton Mountain land, South Africa. Precambrian Res. 54, 271–293 (1992).
pubmed: 11540926
doi: 10.1016/0301-9268(92)90074-X
Spitzer, J. & Poolman, B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol. Mol. Biol. Rev. 73, 371–388 (2009).
pubmed: 19487732
pmcid: 2698416
doi: 10.1128/MMBR.00010-09
Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).
doi: 10.1038/ngeo3006
Johnson, T. E., Brown, M., Kaus, B. J. P. & Vantongeren, J. A. Delamination and recycling of archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).
doi: 10.1038/ngeo2019
Liu, Y., Agudo-Canalejo, J., Grafmüller, A., Dimova, R. & Lipowsky, R. Patterns of flexible nanotubes formed by liquid-ordered and liquid-disordered membranes. ACS Nano 10, 463–474. https://doi.org/10.1021/acsnano.5b05377 (2016).
doi: 10.1021/acsnano.5b05377
pubmed: 26588094
Dreher, Y., Jahnke, K., Bobkova, E., Spatz, J. P. & Göpfrich, K. Division and regrowth of phase-separated giant unilamellar vesicles. Angew. Chem. - Int. Ed. 60, 10661–10669 (2021).
doi: 10.1002/anie.202014174
Kanaparthi, D. & Conrad, R. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria. Syst. Appl. Microbiol. 38, 184–188 (2015).
pubmed: 25864167
doi: 10.1016/j.syapm.2015.02.009
Studer, P. et al. The absence of a mature cell wall sacculus in stable Listeria monocytogenes L-form cells is independent of peptidoglycan synthesis. PLoS ONE 11, e0154925 (2016).
pubmed: 27149671
pmcid: 4858229
doi: 10.1371/journal.pone.0154925
Kawai, Y. et al. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr. Biol. 25, 1613–1618 (2015).
pubmed: 26051891
pmcid: 4510147
doi: 10.1016/j.cub.2015.04.031
Studer, P. et al. Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nat. Commun. 7, 13631 (2016).
pubmed: 27876798
pmcid: 5123018
doi: 10.1038/ncomms13631
Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152, 997–1007 (2013).
pubmed: 23452849
doi: 10.1016/j.cell.2013.01.043
Bobrovska, N., Góźdź, W., Kralj-Iglič, V. & Iglič, A. On the role of anisotropy of membrane components in formation and stabilization of tubular structures in multicomponent membranes. PLoS ONE 8, e73941. https://doi.org/10.1371/journal.pone.0073941 (2013).
doi: 10.1371/journal.pone.0073941
pubmed: 24066088
pmcid: 3774733
Karimi, M. et al. Asymmetric ionic conditions generate large membrane curvatures. Nano Lett. 18, 7816–7821. https://doi.org/10.1021/acs.nanolett.8b03584 (2018).
doi: 10.1021/acs.nanolett.8b03584
pubmed: 30456959
Holló, G., Miele, Y., Rossi, F. & Lagzi, I. Shape changes and budding of giant vesicles induced by an internal chemical trigger: An interplay between osmosis and pH change. Phys. Chem. Chem. Phys. 23, 4262–4270 (2021).
pubmed: 33587060
doi: 10.1039/D0CP05952H
Döbereiner, H. G. Properties of giant vesicles. Curr. Opin. Colloid Interface Sci. 5, 256–263 (2000).
doi: 10.1016/S1359-0294(00)00064-9
Jinendiran, S., Dahms, H. U., Dileep Kumar, B. S., Kumar Ponnusamy, V. & Sivakumar, N. Diapolycopenedioic-acid-diglucosyl ester and keto-myxocoxanthin glucoside ester: Novel carotenoids derived from Exiguobacterium acetylicum S01 and evaluation of their anticancer and anti-inflammatory activities. Bioorgan. Chem. 103, 104149 (2020).
doi: 10.1016/j.bioorg.2020.104149
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572. https://doi.org/10.1038/42408 (1997).
doi: 10.1038/42408
pubmed: 9177342
Corradi, V. et al. Emerging diversity in lipid–protein interactions. Chem. Rev. 119, 5775–5848 (2019).
pubmed: 30758191
pmcid: 6509647
doi: 10.1021/acs.chemrev.8b00451
Bacia, K., Schwille, P. & Kurzchalia, T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 102, 3272–3277. https://doi.org/10.1073/pnas.0408215102 (2005).
doi: 10.1073/pnas.0408215102
pubmed: 15722414
pmcid: 552914
Li, Y., Lipowsky, R. & Dimova, R. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proc. Natl. Acad. Sci. USA 108, 4731–4736. https://doi.org/10.1073/pnas.1015892108 (2011).
doi: 10.1073/pnas.1015892108
pubmed: 21383120
pmcid: 3064332
Lipowsky, R. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013).
pubmed: 23805747
doi: 10.1039/C2FD20105D
Lipowsky, R. Budding of membranes induced by intramembrane domains. J. Phys. II. 2, 1825–1840. https://doi.org/10.1051/jp2:1992238 (1992).
doi: 10.1051/jp2:1992238
Jülicher, F. & Lipowsky, R. Domain-induced budding of vesicles. Phys. Rev. Lett. 70, 2964–2967. https://doi.org/10.1103/PhysRevLett.70.2964 (1993).
doi: 10.1103/PhysRevLett.70.2964
pubmed: 10053698
Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824. https://doi.org/10.1038/nature02013 (2003).
doi: 10.1038/nature02013
pubmed: 14574408
Andes-Koback, M. & Keating, C. D. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 133, 9454–9555 (2011).
doi: 10.1021/ja202406v
Sáenz, J. P. et al. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA 112, 11971–11976. https://doi.org/10.1073/pnas.1515607112 (2015).
doi: 10.1073/pnas.1515607112
pubmed: 26351677
pmcid: 4586864
Yanagisawa, M., Imai, M. & Taniguchi, T. Shape deformation of ternary vesicles coupled with phase separation. Phys. Rev. Lett. 148, 102–104. https://doi.org/10.1103/PhysRevLett.100.148102 (2008).
doi: 10.1103/PhysRevLett.100.148102
Sandoz, P. A., Tremblay, C., Gisou van der Goot, F. & Frechin, M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 17, e3000553 (2019).
pubmed: 31856161
pmcid: 6922317
doi: 10.1371/journal.pbio.3000553
Schwille, P. Division in synthetic cells. Emerg. Top. Life Sci. 3, 551–558. https://doi.org/10.1042/etls20190023 (2019).
doi: 10.1042/etls20190023
pubmed: 33523162
Pelletier, J. F. et al. Genetic requirements for cell division in a genomically minimal cell. Cell 184, 2430–2440 (2021).
pubmed: 33784496
doi: 10.1016/j.cell.2021.03.008
Olivi, L. et al. Towards a synthetic cell cycle. Nat. Commun. 12, 4531 (2021).
pubmed: 34312383
pmcid: 8313558
doi: 10.1038/s41467-021-24772-8
Deshpande, S., Spoelstra, W. K., Van Doorn, M., Kerssemakers, J. & Dekker, C. Mechanical division of cell-sized liposomes. ACS Nano 12, 2560–2568 (2018).
pubmed: 29455527
pmcid: 5876618
doi: 10.1021/acsnano.7b08411
Litschel, T., Ramm, B., Maas, R., Heymann, M. & Schwille, P. Beating vesicles: encapsulated protein oscillations cause dynamic membrane deformations. Angew. Chem.-Int. Ed. https://doi.org/10.1002/anie.201808750 (2018).
doi: 10.1002/anie.201808750
Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408–413. https://doi.org/10.1038/nphys3984 (2017).
doi: 10.1038/nphys3984
Morzy, D. et al. Cations regulate membrane attachment and functionality of DNA nanostructures. J. Am. Chem. Soc. 143, 7358–7367 (2021).
pubmed: 33961742
pmcid: 8154537
doi: 10.1021/jacs.1c00166
Spahn, C., Endesfelder, U. & Heilemann, M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J. Struct. Biol. 185, 243–249 (2014).
pubmed: 24473063
doi: 10.1016/j.jsb.2014.01.007
Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997).
pubmed: 9591479
doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T
Tarun, O. B., Okur, H. I., Rangamani, P. & Roke, S. Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations. Commun. Chem. 3, 17. https://doi.org/10.1038/s42004-020-0263-8 (2020).
doi: 10.1038/s42004-020-0263-8
pubmed: 36703372
pmcid: 9814626
Levy, S. & Chevion, M. Synergistic cytotoxic effect of tetrachlorocatechol and sodium azide in Escherichia coli: Toxicity, metabolism, and mechanistic aspects. Environ. Toxicol. Chem. 28, 218–224 (2009).
doi: 10.1897/08-518.1
Spahn, C., Grimm, J. B., Lavis, L. D., Lampe, M. & Heilemann, M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett. 19, 500–505 (2019).
pubmed: 30525682
doi: 10.1021/acs.nanolett.8b04385
Oglęcka, K., Rangamani, P., Liedberg, B., Kraut, R. S. & Parikh, A. N. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 3, e03695. https://doi.org/10.7554/elife.03695 (2014).
doi: 10.7554/elife.03695
pubmed: 25318069
pmcid: 4197780
Tsai, H. H. G. et al. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: Possible role in stalk formation during membrane fusion. Biochim. Biophys. Acta-Biomembr. 1818, 2742–2755 (2012).
doi: 10.1016/j.bbamem.2012.05.029
Blöchliger, E., Blocher, M., Walde, P. & Luisi, P. L. Matrix effect in the size distribution of fatty acid vesicles. J. Phys. Chem. B 102, 10383–10390 (1998).
doi: 10.1021/jp981234w
Crawford, E. B., Arbic, B. K., Sheldon, N. D., Ansong, J. K. & Timko, P. G. Investigating the behavior of mid-Archean tides and potential implications for biogeochemical cycling. Precambrian Res. 380, 106799 (2022).
doi: 10.1016/j.precamres.2022.106799
Kanaparthi, D. et al. The reproduction of gram-negative protoplasts and the influence of environmental conditions on this process. iScience 26, 108149 (2023).
pubmed: 37942012
pmcid: 10628739
doi: 10.1016/j.isci.2023.108149
Häusler, S. et al. Microenvironments of reduced salinity harbour biofilms in Dead Sea underwater springs. Environ. Microbiol. Rep. 6, 152–158. https://doi.org/10.1111/1758-2229.12140 (2014).
doi: 10.1111/1758-2229.12140
pubmed: 24596288
Kanaparthi, D., Pommerenke, B., Casper, P. & Dumont, M. G. Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3. ISME J. 7, 1582–1594 (2013).
pubmed: 23514778
pmcid: 3721109
doi: 10.1038/ismej.2013.38
Margalit, D. N. et al. Targeting cell division: Small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc. Natl. Acad. Sci. USA 101, 11821–11826 (2004).
pubmed: 15289600
pmcid: 511058
doi: 10.1073/pnas.0404439101