The reproduction process of Gram-positive protocells.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 Mar 2024
Historique:
received: 10 10 2023
accepted: 18 03 2024
medline: 26 3 2024
pubmed: 26 3 2024
entrez: 26 3 2024
Statut: epublish

Résumé

Protocells are believed to have existed on early Earth prior to the emergence of prokaryotes. Due to their rudimentary nature, it is widely accepted that these protocells lacked intracellular mechanisms to regulate their reproduction, thereby relying heavily on environmental conditions. To understand protocell reproduction, we adopted a top-down approach of transforming a Gram-positive bacterium into a lipid-vesicle-like state. In this state, cells lacked intrinsic mechanisms to regulate their morphology or reproduction, resembling theoretical propositions on protocells. Subsequently, we grew these proxy-protocells under the environmental conditions of early Earth to understand their impact on protocell reproduction. Despite the lack of molecular biological coordination, cells in our study underwent reproduction in an organized manner. The method and the efficiency of their reproduction can be explained by an interplay between the physicochemical properties of cell constituents and environmental conditions. While the overall reproductive efficiency in these top-down modified cells was lower than their counterparts with a cell wall, the process always resulted in viable daughter cells. Given the simplicity and suitability of this reproduction method to early Earth environmental conditions, we propose that primitive protocells likely reproduced by a process like the one we described below.

Identifiants

pubmed: 38528088
doi: 10.1038/s41598-024-57369-4
pii: 10.1038/s41598-024-57369-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7075

Subventions

Organisme : European Research Council
ID : 616644
Pays : International

Informations de copyright

© 2024. The Author(s).

Références

Oparin, A. I. Chemistry and the origin of life. R. Inst. Chem. Rev. https://doi.org/10.1039/rr9690200001 (1969).
doi: 10.1039/rr9690200001
Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).
pubmed: 13056598 doi: 10.1126/science.117.3046.528
Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8659–8661 (2018).
doi: 10.1021/jacs.8b05189
Liu, Z. et al. Prebiotic photoredox synthesis from carbon dioxide and sulfite. Nat. Chem. 13, 1126–1132 (2021).
pubmed: 34635812 pmcid: 7611910 doi: 10.1038/s41557-021-00789-w
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387 (2001).
pubmed: 11201752 doi: 10.1038/35053176
Chen, I. A., Salehi-Ashtiani, K. & Szostak, J. W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc. 127, 13213–13219 (2005).
pubmed: 16173749 pmcid: 5072289 doi: 10.1021/ja051784p
Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J Am Chem Soc. 131, 5705–5713 (2009).
pubmed: 19323552 pmcid: 2669828 doi: 10.1021/ja900919c
Navarro, P. P. et al. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat. Microbiol. 7, 1621–1634 (2022).
pubmed: 36097171 pmcid: 9519445 doi: 10.1038/s41564-022-01210-z
Eswara, P. J. & Ramamurthi, K. S. Bacterial cell division: Nonmodels poised to take the spotlight. Annu. Rev. Microbiol. 71, 393–411 (2017).
pubmed: 28697666 pmcid: 6291244 doi: 10.1146/annurev-micro-102215-095657
Kudella, P. W. et al. Fission of lipid-vesicles by membrane phase transitions in thermal convection. Sci. Rep. 9, 18808 (2019).
pubmed: 31827164 pmcid: 6906453 doi: 10.1038/s41598-019-55110-0
Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302, 618–622 (2003).
pubmed: 14576428 pmcid: 4484575 doi: 10.1126/science.1089904
Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl. Acad. Sci. 108, 5249–5254 (2011).
pubmed: 21402937 pmcid: 3069173 doi: 10.1073/pnas.1100498108
Wu, L. J. et al. Geometric principles underlying the proliferation of a model cell system. Nat. Commun. 11, 4149 (2020).
pubmed: 32811832 pmcid: 7434903 doi: 10.1038/s41467-020-17988-7
Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009).
pubmed: 19212404 doi: 10.1038/nature07742
Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).
pubmed: 23303308 pmcid: 3603455 doi: 10.1098/rsob.120143
Kanaparthi, D. et al. On the reproductive mechanism of Gram-negative protocells. bioRxiv 2021.11.25.470037 https://doi.org/10.1101/2021.11.25.470037 (2021).
Blake, R. E., Chang, S. J. & Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1032 (2010).
pubmed: 20393560 doi: 10.1038/nature08952
Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax142 (2020).
doi: 10.1126/sciadv.aax1420
Knauth, L. P. Salinity history of the Earth’s early ocean. Nature 395, 554–555 (1998).
pubmed: 11542867 doi: 10.1038/26879
Alleon, J. et al. Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochem. Perspect. Lett. 7, 37–42 (2018).
doi: 10.7185/geochemlet.1817
Walsh, M. W. Microfossils and possible microfossils from the early Archean Onverwacht group, Barberton Mountain land, South Africa. Precambrian Res. 54, 271–293 (1992).
pubmed: 11540926 doi: 10.1016/0301-9268(92)90074-X
Spitzer, J. & Poolman, B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol. Mol. Biol. Rev. 73, 371–388 (2009).
pubmed: 19487732 pmcid: 2698416 doi: 10.1128/MMBR.00010-09
Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).
doi: 10.1038/ngeo3006
Johnson, T. E., Brown, M., Kaus, B. J. P. & Vantongeren, J. A. Delamination and recycling of archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).
doi: 10.1038/ngeo2019
Liu, Y., Agudo-Canalejo, J., Grafmüller, A., Dimova, R. & Lipowsky, R. Patterns of flexible nanotubes formed by liquid-ordered and liquid-disordered membranes. ACS Nano 10, 463–474. https://doi.org/10.1021/acsnano.5b05377 (2016).
doi: 10.1021/acsnano.5b05377 pubmed: 26588094
Dreher, Y., Jahnke, K., Bobkova, E., Spatz, J. P. & Göpfrich, K. Division and regrowth of phase-separated giant unilamellar vesicles. Angew. Chem. - Int. Ed. 60, 10661–10669 (2021).
doi: 10.1002/anie.202014174
Kanaparthi, D. & Conrad, R. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria. Syst. Appl. Microbiol. 38, 184–188 (2015).
pubmed: 25864167 doi: 10.1016/j.syapm.2015.02.009
Studer, P. et al. The absence of a mature cell wall sacculus in stable Listeria monocytogenes L-form cells is independent of peptidoglycan synthesis. PLoS ONE 11, e0154925 (2016).
pubmed: 27149671 pmcid: 4858229 doi: 10.1371/journal.pone.0154925
Kawai, Y. et al. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr. Biol. 25, 1613–1618 (2015).
pubmed: 26051891 pmcid: 4510147 doi: 10.1016/j.cub.2015.04.031
Studer, P. et al. Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nat. Commun. 7, 13631 (2016).
pubmed: 27876798 pmcid: 5123018 doi: 10.1038/ncomms13631
Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152, 997–1007 (2013).
pubmed: 23452849 doi: 10.1016/j.cell.2013.01.043
Bobrovska, N., Góźdź, W., Kralj-Iglič, V. & Iglič, A. On the role of anisotropy of membrane components in formation and stabilization of tubular structures in multicomponent membranes. PLoS ONE 8, e73941. https://doi.org/10.1371/journal.pone.0073941 (2013).
doi: 10.1371/journal.pone.0073941 pubmed: 24066088 pmcid: 3774733
Karimi, M. et al. Asymmetric ionic conditions generate large membrane curvatures. Nano Lett. 18, 7816–7821. https://doi.org/10.1021/acs.nanolett.8b03584 (2018).
doi: 10.1021/acs.nanolett.8b03584 pubmed: 30456959
Holló, G., Miele, Y., Rossi, F. & Lagzi, I. Shape changes and budding of giant vesicles induced by an internal chemical trigger: An interplay between osmosis and pH change. Phys. Chem. Chem. Phys. 23, 4262–4270 (2021).
pubmed: 33587060 doi: 10.1039/D0CP05952H
Döbereiner, H. G. Properties of giant vesicles. Curr. Opin. Colloid Interface Sci. 5, 256–263 (2000).
doi: 10.1016/S1359-0294(00)00064-9
Jinendiran, S., Dahms, H. U., Dileep Kumar, B. S., Kumar Ponnusamy, V. & Sivakumar, N. Diapolycopenedioic-acid-diglucosyl ester and keto-myxocoxanthin glucoside ester: Novel carotenoids derived from Exiguobacterium acetylicum S01 and evaluation of their anticancer and anti-inflammatory activities. Bioorgan. Chem. 103, 104149 (2020).
doi: 10.1016/j.bioorg.2020.104149
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572. https://doi.org/10.1038/42408 (1997).
doi: 10.1038/42408 pubmed: 9177342
Corradi, V. et al. Emerging diversity in lipid–protein interactions. Chem. Rev. 119, 5775–5848 (2019).
pubmed: 30758191 pmcid: 6509647 doi: 10.1021/acs.chemrev.8b00451
Bacia, K., Schwille, P. & Kurzchalia, T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 102, 3272–3277. https://doi.org/10.1073/pnas.0408215102 (2005).
doi: 10.1073/pnas.0408215102 pubmed: 15722414 pmcid: 552914
Li, Y., Lipowsky, R. & Dimova, R. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proc. Natl. Acad. Sci. USA 108, 4731–4736. https://doi.org/10.1073/pnas.1015892108 (2011).
doi: 10.1073/pnas.1015892108 pubmed: 21383120 pmcid: 3064332
Lipowsky, R. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013).
pubmed: 23805747 doi: 10.1039/C2FD20105D
Lipowsky, R. Budding of membranes induced by intramembrane domains. J. Phys. II. 2, 1825–1840. https://doi.org/10.1051/jp2:1992238 (1992).
doi: 10.1051/jp2:1992238
Jülicher, F. & Lipowsky, R. Domain-induced budding of vesicles. Phys. Rev. Lett. 70, 2964–2967. https://doi.org/10.1103/PhysRevLett.70.2964 (1993).
doi: 10.1103/PhysRevLett.70.2964 pubmed: 10053698
Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824. https://doi.org/10.1038/nature02013 (2003).
doi: 10.1038/nature02013 pubmed: 14574408
Andes-Koback, M. & Keating, C. D. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 133, 9454–9555 (2011).
doi: 10.1021/ja202406v
Sáenz, J. P. et al. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA 112, 11971–11976. https://doi.org/10.1073/pnas.1515607112 (2015).
doi: 10.1073/pnas.1515607112 pubmed: 26351677 pmcid: 4586864
Yanagisawa, M., Imai, M. & Taniguchi, T. Shape deformation of ternary vesicles coupled with phase separation. Phys. Rev. Lett. 148, 102–104. https://doi.org/10.1103/PhysRevLett.100.148102 (2008).
doi: 10.1103/PhysRevLett.100.148102
Sandoz, P. A., Tremblay, C., Gisou van der Goot, F. & Frechin, M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 17, e3000553 (2019).
pubmed: 31856161 pmcid: 6922317 doi: 10.1371/journal.pbio.3000553
Schwille, P. Division in synthetic cells. Emerg. Top. Life Sci. 3, 551–558. https://doi.org/10.1042/etls20190023 (2019).
doi: 10.1042/etls20190023 pubmed: 33523162
Pelletier, J. F. et al. Genetic requirements for cell division in a genomically minimal cell. Cell 184, 2430–2440 (2021).
pubmed: 33784496 doi: 10.1016/j.cell.2021.03.008
Olivi, L. et al. Towards a synthetic cell cycle. Nat. Commun. 12, 4531 (2021).
pubmed: 34312383 pmcid: 8313558 doi: 10.1038/s41467-021-24772-8
Deshpande, S., Spoelstra, W. K., Van Doorn, M., Kerssemakers, J. & Dekker, C. Mechanical division of cell-sized liposomes. ACS Nano 12, 2560–2568 (2018).
pubmed: 29455527 pmcid: 5876618 doi: 10.1021/acsnano.7b08411
Litschel, T., Ramm, B., Maas, R., Heymann, M. & Schwille, P. Beating vesicles: encapsulated protein oscillations cause dynamic membrane deformations. Angew. Chem.-Int. Ed. https://doi.org/10.1002/anie.201808750 (2018).
doi: 10.1002/anie.201808750
Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408–413. https://doi.org/10.1038/nphys3984 (2017).
doi: 10.1038/nphys3984
Morzy, D. et al. Cations regulate membrane attachment and functionality of DNA nanostructures. J. Am. Chem. Soc. 143, 7358–7367 (2021).
pubmed: 33961742 pmcid: 8154537 doi: 10.1021/jacs.1c00166
Spahn, C., Endesfelder, U. & Heilemann, M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J. Struct. Biol. 185, 243–249 (2014).
pubmed: 24473063 doi: 10.1016/j.jsb.2014.01.007
Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997).
pubmed: 9591479 doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T
Tarun, O. B., Okur, H. I., Rangamani, P. & Roke, S. Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations. Commun. Chem. 3, 17. https://doi.org/10.1038/s42004-020-0263-8 (2020).
doi: 10.1038/s42004-020-0263-8 pubmed: 36703372 pmcid: 9814626
Levy, S. & Chevion, M. Synergistic cytotoxic effect of tetrachlorocatechol and sodium azide in Escherichia coli: Toxicity, metabolism, and mechanistic aspects. Environ. Toxicol. Chem. 28, 218–224 (2009).
doi: 10.1897/08-518.1
Spahn, C., Grimm, J. B., Lavis, L. D., Lampe, M. & Heilemann, M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett. 19, 500–505 (2019).
pubmed: 30525682 doi: 10.1021/acs.nanolett.8b04385
Oglęcka, K., Rangamani, P., Liedberg, B., Kraut, R. S. & Parikh, A. N. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 3, e03695. https://doi.org/10.7554/elife.03695 (2014).
doi: 10.7554/elife.03695 pubmed: 25318069 pmcid: 4197780
Tsai, H. H. G. et al. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: Possible role in stalk formation during membrane fusion. Biochim. Biophys. Acta-Biomembr. 1818, 2742–2755 (2012).
doi: 10.1016/j.bbamem.2012.05.029
Blöchliger, E., Blocher, M., Walde, P. & Luisi, P. L. Matrix effect in the size distribution of fatty acid vesicles. J. Phys. Chem. B 102, 10383–10390 (1998).
doi: 10.1021/jp981234w
Crawford, E. B., Arbic, B. K., Sheldon, N. D., Ansong, J. K. & Timko, P. G. Investigating the behavior of mid-Archean tides and potential implications for biogeochemical cycling. Precambrian Res. 380, 106799 (2022).
doi: 10.1016/j.precamres.2022.106799
Kanaparthi, D. et al. The reproduction of gram-negative protoplasts and the influence of environmental conditions on this process. iScience 26, 108149 (2023).
pubmed: 37942012 pmcid: 10628739 doi: 10.1016/j.isci.2023.108149
Häusler, S. et al. Microenvironments of reduced salinity harbour biofilms in Dead Sea underwater springs. Environ. Microbiol. Rep. 6, 152–158. https://doi.org/10.1111/1758-2229.12140 (2014).
doi: 10.1111/1758-2229.12140 pubmed: 24596288
Kanaparthi, D., Pommerenke, B., Casper, P. & Dumont, M. G. Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3. ISME J. 7, 1582–1594 (2013).
pubmed: 23514778 pmcid: 3721109 doi: 10.1038/ismej.2013.38
Margalit, D. N. et al. Targeting cell division: Small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc. Natl. Acad. Sci. USA 101, 11821–11826 (2004).
pubmed: 15289600 pmcid: 511058 doi: 10.1073/pnas.0404439101

Auteurs

Dheeraj Kanaparthi (D)

Department of Cellular and Molecular Biophysics, Max-Planck Institute for Biochemistry, Munich, Germany. kanaparthi@biochem.mpg.de.
Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany. kanaparthi@biochem.mpg.de.
Excellenzcluster Origins, Garching, Germany. kanaparthi@biochem.mpg.de.

Marko Lampe (M)

Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany.

Jan-Hagen Krohn (JH)

Department of Cellular and Molecular Biophysics, Max-Planck Institute for Biochemistry, Munich, Germany.
Excellenzcluster Origins, Garching, Germany.

Baoli Zhu (B)

Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany.
Key Laboratory of Agro-Ecological Processes in Subtropical Regions, CAS, Changsha, China.

Falk Hildebrand (F)

Quadrum Institute, Norwich, UK.

Thomas Boesen (T)

Department of Biosciences, Center for Electromicrobiology, Aarhus, Denmark.

Andreas Klingl (A)

Department of Biology, LMU, Planegg-Martinsried, Germany.

Prasad Phapale (P)

European Molecular Biology Laboratory, Heidelberg, Germany.

Tillmann Lueders (T)

Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany. Tillmann.Lueders@uni-bayreuth.de.

Classifications MeSH