Polygenic risk score for ulcerative colitis predicts immune checkpoint inhibitor-mediated colitis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 Mar 2024
Historique:
received: 22 05 2023
accepted: 15 12 2023
medline: 27 3 2024
pubmed: 27 3 2024
entrez: 27 3 2024
Statut: epublish

Résumé

Immune checkpoint inhibitor-mediated colitis (IMC) is a common adverse event of treatment with immune checkpoint inhibitors (ICI). We hypothesize that genetic susceptibility to Crohn's disease (CD) and ulcerative colitis (UC) predisposes to IMC. In this study, we first develop a polygenic risk scores for CD (PRS

Identifiants

pubmed: 38531883
doi: 10.1038/s41467-023-44512-4
pii: 10.1038/s41467-023-44512-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2568

Investigateurs

Natasha B Leighl (NB)
Penelope A Bradbury (PA)
Frances A Shepherd (FA)
Adrian G Sacher (AG)
Lawson Eng (L)

Informations de copyright

© 2024. The Author(s).

Références

Bai, R. L., Chen, N. F., Li, L. Y. & Cui, J. W. A brand new era of cancer immunotherapy: breakthroughs and challenges. Chin. Med. J. (Engl.). 134, 1267–1275 (2021).
pubmed: 34039862 pmcid: 8183825 doi: 10.1097/CM9.0000000000001490
Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).
pubmed: 30115704 doi: 10.1158/2159-8290.CD-18-0367
Twomey, J. D. & Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23, 39 (2021).
pubmed: 33677681 doi: 10.1208/s12248-021-00574-0
Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 27, 450–461 (2015).
pubmed: 25858804 pmcid: 4400238 doi: 10.1016/j.ccell.2015.03.001
Sharpe, A. H. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol. Rev. 276, 5–8 (2017).
pubmed: 28258698 pmcid: 5362112 doi: 10.1111/imr.12531
Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).
pubmed: 32732879 pmcid: 7393098 doi: 10.1038/s41467-020-17670-y
Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50, 1–11 (2018).
pubmed: 30546008 doi: 10.1038/s12276-018-0191-1
Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).
pubmed: 26558876 pmcid: 4892769 doi: 10.1097/COC.0000000000000239
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532 pmcid: 7238960 doi: 10.1038/s41577-020-0306-5
Liu, X., Hogg, G. D. & DeNardo, D. G. Rethinking immune checkpoint blockade: ‘Beyond the T cell. J. Immunother. Cancer 9, e001460 (2021).
pubmed: 33468555 pmcid: 7817791 doi: 10.1136/jitc-2020-001460
Ribas, A. Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 366, 2517–2519 (2012).
pubmed: 22658126 doi: 10.1056/NEJMe1205943
Byun, D. J., Wolchok, J. D., Rosenberg, L. M. & Girotra, M. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 13, 195–207 (2017).
pubmed: 28106152 pmcid: 5629093 doi: 10.1038/nrendo.2016.205
Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).
pubmed: 29320654 doi: 10.1056/NEJMra1703481
Wang, Y. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials. JAMA Oncol. 5, 1008–1019 (2019).
pubmed: 31021376 pmcid: 6487913 doi: 10.1001/jamaoncol.2019.0393
Okiyama, N. & Tanaka, R. Immune-related adverse events in various organs caused by immune checkpoint inhibitors. Allergol. Int. 71, 169–178 (2022).
pubmed: 35101349 doi: 10.1016/j.alit.2022.01.001
Shankar, B. et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer. JAMA Oncol. 6, 1952–1956 (2020).
pubmed: 33119034 doi: 10.1001/jamaoncol.2020.5012
Conroy, M. & Naidoo, J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 13, 392 (2022).
pubmed: 35046403 pmcid: 8770784 doi: 10.1038/s41467-022-27960-2
Som, A. et al. Immune checkpoint inhibitor-induced colitis: a comprehensive review. World J. Clin. Cases 7, 405–418 (2019).
pubmed: 30842952 pmcid: 6397821 doi: 10.12998/wjcc.v7.i4.405
Pocha, C., Roat, J. & Viskocil, K. Immune-mediated colitis: important to recognize and treat. J. Crohn’s Colitis 8, 181–182 (2014).
doi: 10.1016/j.crohns.2013.09.019
Pauken, K. E., Dougan, M., Rose, N. R., Lichtman, A. H. & Sharpe, A. H. Adverse events following cancer immunotherapy: obstacles and opportunities. Trends Immunol. 40, 511–523 (2019).
pubmed: 31053497 pmcid: 6527345 doi: 10.1016/j.it.2019.04.002
Kelly-Goss, M. R., Badran, Y. R. & Dougan, M. Update on immune checkpoint inhibitor Enterocolitis. Curr. Gastroenterol. Rep. 24, 171–181 (2022).
pubmed: 36264425 pmcid: 9583048 doi: 10.1007/s11894-022-00852-7
Chen, J. H., Pezhouh, M. K., Lauwers, G. Y. & Masia, R. Histopathologic features of colitis due to immunotherapy with anti-PD-1 antibodies. Am. J. Surg. Pathol. 41, 643–654 (2017).
pubmed: 28296676 doi: 10.1097/PAS.0000000000000829
Nahar, K. J. et al. Clinicopathological characteristics and management of colitis with anti-PD1 immunotherapy alone or in combination with ipilimumab. J. Immunother. Cancer 8, e001488 (2020).
pubmed: 33234603 pmcid: 7689081 doi: 10.1136/jitc-2020-001488
Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin. Pharm. Ther. 84, 362–369 (2008).
doi: 10.1038/clpt.2008.89
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
pmcid: 8016455 doi: 10.1093/bioinformatics/btaa1029
Ashton, J. J., Latham, K., Beattie, R. M. & Ennis, S. Review article: the genetics of the human leucocyte antigen region in inflammatory bowel disease. Aliment. Pharmacol. Ther. 50, 885–900 (2019).
pubmed: 31518029 doi: 10.1111/apt.15485
Goyette, P. et al. High density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).
pubmed: 25559196 pmcid: 4310771 doi: 10.1038/ng.3176
Marin-Acevedo, J. A., Kimbrough, E. O. & Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 14, 45 (2021).
pubmed: 33741032 pmcid: 7977302 doi: 10.1186/s13045-021-01056-8
Tang, W. F. et al. Adjuvant immunotherapy in early-stage resectable non–small cell lung cancer: a new milestone. Front. Oncol. 13, 1063183 (2023).
pubmed: 36776323 pmcid: 9909200 doi: 10.3389/fonc.2023.1063183
Mittendorf, E. A., Burgers, F., Haanen, J. & Cascone, T. Neoadjuvant immunotherapy: leveraging the immune system to treat early-stage disease. Am. Soc. Clin. Oncol. Educ. Book. 189–203 https://doi.org/10.1200/EDBK_349411 (2022)
Krishnamoorthy, M., Lenehan, J. G. & Maleki Vareki, S. Neoadjuvant immunotherapy for high-risk, resectable malignancies: scientific rationale and clinical challenges. J. Natl Cancer Inst. 113, 823–832 (2021).
pubmed: 33432320 pmcid: 8246900 doi: 10.1093/jnci/djaa216
Hu, H. G. & Li, Y. M. Emerging adjuvants for cancer immunotherapy. Front. Chem. 8, 601 (2020).
pubmed: 32850636 pmcid: 7406886 doi: 10.3389/fchem.2020.00601
Zhang, Y. et al. Biomarkers and risk factors for the early prediction of immune-related adverse events: a review. Hum. Vaccin. Immunother. 18, 2018894 (2022).
pubmed: 35108160 pmcid: 8986173 doi: 10.1080/21645515.2021.2018894
Hommes, J. W., Verheijden, R. J., Suijkerbuijk, K. P. M. & Hamann, D. Biomarkers of checkpoint inhibitor induced immune-related adverse events—a comprehensive review. Front Oncol. 10, 585311 (2021).
pubmed: 33643899 pmcid: 7905347 doi: 10.3389/fonc.2020.585311
Kennedy, L. C. & Grivas, P. Immunotherapy-related colitis: an emerging challenge and a quest for prospective data. JCO Oncol. Pract. 16, 464–465 (2020).
pubmed: 32780983 doi: 10.1200/OP.20.00620
Westdorp, H. et al. Mechanisms of immune checkpoint inhibitor-mediated colitis. Front. Immunol. 2021;12. Accessed September 23, 2022. https://www.frontiersin.org/articles/10.3389/fimmu.2021.768957 .
Luo, Y. et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 49, 186–192 (2017).
pubmed: 28067910 pmcid: 5289625 doi: 10.1038/ng.3761
Onoufriadis, A. et al. Exome sequencing and genotyping identify a rare variant in NLRP7 gene associated with ulcerative colitis. J. Crohn’s Colitis 12, 321–326 (2018).
doi: 10.1093/ecco-jcc/jjx157
Ellinghaus, D., Bethune, J., Petersen, B. S. & Franke, A. The genetics of Crohn’s disease and ulcerative colitis–status quo and beyond. Scand. J. Gastroenterol. 50, 13–23 (2015).
pubmed: 25523552 doi: 10.3109/00365521.2014.990507
Luo, J. et al. Immunotherapy-mediated thyroid dysfunction: genetic risk and impact on outcomes with PD-1 blockade in non–small cell lung cancer. Clin. Cancer Res. 27, 5131–5140 (2021).
pubmed: 34244291 pmcid: 8815444 doi: 10.1158/1078-0432.CCR-21-0921
Khan, Z. et al. Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade. Nat. Commun. 12, 3355 (2021).
pubmed: 34099659 pmcid: 8184890 doi: 10.1038/s41467-021-23661-4
Khan, Z. et al. Polygenic risk for skin autoimmunity impacts immune checkpoint blockade in bladder cancer. Proc. Natl Acad. Sci. USA 117, 12288–12294 (2020).
pubmed: 32430334 pmcid: 7275757 doi: 10.1073/pnas.1922867117
Zhou, X. et al. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 18, 87 (2020).
pubmed: 32306958 pmcid: 7169020 doi: 10.1186/s12916-020-01549-2
Zhao, Z. et al. Immune-related adverse events associated with outcomes in patients with NSCLC treated with anti-PD-1 inhibitors: a systematic review and meta-analysis. Front. Oncol. 2021;11. Accessed June 1, 2022. https://www.frontiersin.org/article/10.3389/fonc.2021.708195 .
Petrelli, F. et al. Immune-related adverse events and survival in solid tumors treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J. Immunother. 43, 1–7 (2020).
pubmed: 31574022 doi: 10.1097/CJI.0000000000000300
Toi, Y. et al. Association of immune‐related adverse events with clinical benefit in patients with advanced non‐small‐cell lung cancer treated with nivolumab. Oncologist 23, 1358–1365 (2018).
pubmed: 29934411 pmcid: 6291330 doi: 10.1634/theoncologist.2017-0384
Morimoto, K. et al. Immune-related adverse events are associated with clinical benefit in patients with non-small-cell lung cancer treated with immunotherapy plus chemotherapy: a retrospective study. Front. Oncol. 11, 630136 (2021).
pubmed: 33833990 pmcid: 8021904 doi: 10.3389/fonc.2021.630136
Abu-Sbeih, H. et al. Immune checkpoint inhibitor-induced colitis as a predictor of survival in metastatic melanoma. Cancer Immunol. Immunother. 68, 553–561 (2019).
pubmed: 30666357 doi: 10.1007/s00262-019-02303-1
Abu-Sbeih, H. et al. Outcomes of vedolizumab therapy in patients with immune checkpoint inhibitor–induced colitis: a multi-center study. J. Immunother. Cancer 6, 142 (2018).
pubmed: 30518410 pmcid: 6280383 doi: 10.1186/s40425-018-0461-4
Bergqvist, V. et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol. Immunother. 66, 581–592 (2017).
pubmed: 28204866 pmcid: 5406433 doi: 10.1007/s00262-017-1962-6
Park, R., Lopes, L., Cristancho, C. R., Riano, I. M. & Saeed, A. Treatment-related adverse events of combination immune checkpoint inhibitors: systematic review and meta-analysis. Front. Oncol. 2020;10. Accessed March 15, 2023. https://www.frontiersin.org/articles/10.3389/fonc.2020.00258 .
Paz-Ares, L. et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 22, 198–211 (2021).
pubmed: 33476593 doi: 10.1016/S1470-2045(20)30641-0
Da, L. et al. Organ-specific immune-related adverse events associated with immune checkpoint inhibitor monotherapy versus combination therapy in cancer: a meta-analysis of randomized controlled trials. Front. Pharmacol. 10, 1671 (2020).
pubmed: 32082164 pmcid: 7002539 doi: 10.3389/fphar.2019.01671
Carretero-González, A. et al. Comparative safety analysis of immunotherapy combined with chemotherapy versus monotherapy in solid tumors: a meta-analysis of randomized clinical trials. Oncotarget 10, 3294–3301 (2019).
pubmed: 31143375 pmcid: 6524939 doi: 10.18632/oncotarget.26908
Zhuo, M., Chi, Y. & Wang, Z. The adverse events associated with combination immunotherapy in cancers: Challenges and chances. Asia-Pac. J. Clin. Oncol. 16, e154–e159 (2020).
pubmed: 32786161 doi: 10.1111/ajco.13365
Felip, E. et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet 398, 1344–1357 (2021).
pubmed: 34555333 doi: 10.1016/S0140-6736(21)02098-5
O’Brien, M. et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB–IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): an interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 23, 1274–1286 (2022).
pubmed: 36108662 doi: 10.1016/S1470-2045(22)00518-6
Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet 399, 1718–1729 (2022).
pubmed: 35367007 doi: 10.1016/S0140-6736(22)00562-1
Klein, R. J. & Gümüş, Z. H. Are polygenic risk scores ready for the cancer clinic?-a perspective. Transl. Lung Cancer Res. 11, 910–919 (2022).
pubmed: 35693291 pmcid: 9186162 doi: 10.21037/tlcr-21-698
Lewis, A. C. F. & Green, R. C. Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues. Genome Med. 13, 14 (2021).
pubmed: 33509269 pmcid: 7844961 doi: 10.1186/s13073-021-00829-7
Lewis, A. C. F., Green, R. C. & Vassy, J. L. Polygenic risk scores in the clinic: translating risk into action. HGG Adv. 2, 100047 (2021).
pubmed: 35047839 pmcid: 8756548
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
pubmed: 30926966 pmcid: 6563838 doi: 10.1038/s41588-019-0379-x
Lee, M. & Chang, E. B. Inflammatory bowel diseases (IBD) and the microbiome—searching the crime scene for clues. Gastroenterology 160, 524–537 (2021).
pubmed: 33253681 doi: 10.1053/j.gastro.2020.09.056
Anderson, J. R., Cain, K. C. & Gelber, R. D. Analysis of survival by tumor response. J. Clin. Oncol. 1, 710–719 (1983).
pubmed: 6668489 doi: 10.1200/JCO.1983.1.11.710
Anderson, J. R., Cain, K. C. & Gelber, R. D. Analysis of survival by tumor response and other comparisons of time-to-event by outcome variables. J. Clin. Oncol. 26, 3913–3915 (2008).
pubmed: 18711176 doi: 10.1200/JCO.2008.16.1000
Morgan, C. J. Landmark analysis: a primer. J. Nucl. Cardiol. 26, 391–393 (2019).
pubmed: 30719655 doi: 10.1007/s12350-019-01624-z
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).
pubmed: 28067908 pmcid: 5289481 doi: 10.1038/ng.3760
Cook, S. et al. Accurate imputation of human leukocyte antigens with CookHLA. Nat. Commun. 12, 1264 (2021).
pubmed: 33627654 pmcid: 7904773 doi: 10.1038/s41467-021-21541-5
Choi, W., Luo, Y., Raychaudhuri, S. & Han, B. HATK: HLA analysis toolkit. Bioinformatics 37, 416–418 (2021).
pubmed: 32735319 doi: 10.1093/bioinformatics/btaa684
Brown, W. M. et al. Overview of the MHC fine mapping data. Diabetes Obes. Metab. 11, 2–7 (2009) .
pubmed: 19143809 pmcid: 2697814 doi: 10.1111/j.1463-1326.2008.00997.x
Middha, P. PoojaMiddha/GeRI_colitis: Polygenic risk score for ulcerative colitis predicts immune checkpoint inhibitor-mediated colitis. Published online November 20, 2023. https://doi.org/10.5281/ZENODO.10162343 .

Auteurs

Pooja Middha (P)

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Rohit Thummalapalli (R)

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Michael J Betti (MJ)

Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Lydia Yao (L)

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

Zoe Quandt (Z)

Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
Diabetes Center, University of California San Francisco, San Francisco, CA, USA.

Karmugi Balaratnam (K)

Princess Margaret Cancer Centre, Toronto, ON, Canada.

Cosmin A Bejan (CA)

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.

Eduardo Cardenas (E)

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Christina J Falcon (CJ)

Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

David M Faleck (DM)

Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Matthew A Gubens (MA)

Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.

Scott Huntsman (S)

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Douglas B Johnson (DB)

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Linda Kachuri (L)

Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
Stanford Cancer Institute, Stanford University of Medicine, Stanford, CA, USA.

Khaleeq Khan (K)

Princess Margaret Cancer Centre, Toronto, ON, Canada.

Min Li (M)

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Christine M Lovly (CM)

Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA.

Megan H Murray (MH)

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

Devalben Patel (D)

Princess Margaret Cancer Centre, Toronto, ON, Canada.

Kristin Werking (K)

Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.

Yaomin Xu (Y)

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

Luna Jia Zhan (LJ)

Princess Margaret Cancer Centre, Toronto, ON, Canada.

Justin M Balko (JM)

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Geoffrey Liu (G)

Princess Margaret Cancer Centre, Toronto, ON, Canada.
Temerty School of Medicine, Toronto, ON, Canada.
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Melinda C Aldrich (MC)

Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Adam J Schoenfeld (AJ)

Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Elad Ziv (E)

Department of Medicine, University of California San Francisco, San Francisco, CA, USA. Elad.Ziv@ucsf.edu.
Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. Elad.Ziv@ucsf.edu.
Center for Genes, Environment and Health, University of California San Francisco, San Francisco, CA, USA. Elad.Ziv@ucsf.edu.
Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. Elad.Ziv@ucsf.edu.

Classifications MeSH