Expanding the clinical spectrum of biglycan-related Meester-Loeys syndrome.


Journal

NPJ genomic medicine
ISSN: 2056-7944
Titre abrégé: NPJ Genom Med
Pays: England
ID NLM: 101685193

Informations de publication

Date de publication:
26 Mar 2024
Historique:
received: 01 12 2023
accepted: 15 03 2024
medline: 27 3 2024
pubmed: 27 3 2024
entrez: 27 3 2024
Statut: epublish

Résumé

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

Identifiants

pubmed: 38531898
doi: 10.1038/s41525-024-00413-z
pii: 10.1038/s41525-024-00413-z
doi:

Types de publication

Journal Article

Langues

eng

Pagination

22

Subventions

Organisme : Universiteit Antwerpen (University of Antwerp)
ID : Methusalem-OEC grant "Genomed" - 40709
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : G040221N, G044720N
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : 12X8520N, 12AO124N
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : 11PM524N
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : ERC-COG-2017-771945
Organisme : U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
ID : K08-HD111688

Informations de copyright

© 2024. The Author(s).

Références

Meester, J. A. et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet. Med. 19, 386–395 (2017).
doi: 10.1038/gim.2016.126 pubmed: 27632686
Marfan, A.-B. Un cas de deformation congenitales des quatre membres plus prononcee aux extremities characterisee par l’allongment des os avec un certain dgre d’amincissement. Bull. Mem. Soc. Med. Hop. (Paris) 13, 220 (1986).
HC, D. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Am. J. Hum. Genet. 49, 662–667 (1991).
Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).
doi: 10.1038/ng1511 pubmed: 15731757
Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N. Engl. J. Med. 355, 788–798 (2006).
doi: 10.1056/NEJMoa055695 pubmed: 16928994
van de Laar, I. M. et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43, 121–126 (2011).
doi: 10.1038/ng.744 pubmed: 21217753
Regalado, E. S. et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ. Res. 109, 680–686 (2011).
doi: 10.1161/CIRCRESAHA.111.248161 pubmed: 21778426 pmcid: 4115811
Boileau, C. et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat. Genet. 44, 916–921 (2012).
doi: 10.1038/ng.2348 pubmed: 22772371 pmcid: 4033668
Lindsay, M. E. et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 44, 922–927 (2012).
doi: 10.1038/ng.2349 pubmed: 22772368 pmcid: 3616632
Rienhoff, H. Y. et al. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am. J. Med Genet. A 161A, 2040–2046 (2013).
doi: 10.1002/ajmg.a.36056 pubmed: 23824657
Micha, D. et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum. Mutat. 36, 1145–1149 (2015).
doi: 10.1002/humu.22854 pubmed: 26247899
Meester, J. A. N., De Kinderen, P., Verstraeten, A. & Loeys, B. Meester-Loeys syndrome. Adv. Exp. Med. Biol. 1348, 265–272 (2021).
doi: 10.1007/978-3-030-80614-9_12 pubmed: 34807424
Heegaard, A. M. et al. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 115, 2731–2738 (2007).
doi: 10.1161/CIRCULATIONAHA.106.653980 pubmed: 17502576
Halper, J. Proteoglycans and diseases of soft tissues. Adv. Exp. Med. Biol. 802, 49–58 (2014).
doi: 10.1007/978-94-007-7893-1_4 pubmed: 24443020
Roughley, P. J. & White, R. J. Dermatan sulphate proteoglycans of human articular cartilage. The properties of dermatan sulphate proteoglycans I and II. Biochem. J. 262, 823–827 (1989).
doi: 10.1042/bj2620823 pubmed: 2590169 pmcid: 1133347
Douglas, T., Heinemann, S., Bierbaum, S., Scharnweber, D. & Worch, H. Fibrillogenesis of collagen types I, II, and III with small leucine-rich proteoglycans decorin and biglycan. Biomacromolecules 7, 2388–2393 (2006).
doi: 10.1021/bm0603746 pubmed: 16903686
Wiberg, C., Heinegard, D., Wenglen, C., Timpl, R. & Morgelin, M. Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J. Biol. Chem. 277, 49120–49126 (2002).
doi: 10.1074/jbc.M206891200 pubmed: 12354766
Reinboth, B., Hanssen, E., Cleary, E. G. & Gibson, M. A. Molecular interactions of biglycan and decorin with elastic fiber components: biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J. Biol. Chem. 277, 3950–3957 (2002).
doi: 10.1074/jbc.M109540200 pubmed: 11723132
Hildebrand, A. et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302, 527–534 (1994).
doi: 10.1042/bj3020527 pubmed: 8093006 pmcid: 1137259
Bianco, P., Fisher, L. W., Young, M. F., Termine, J. D. & Robey, P. G. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J. Histochem. Cytochem. 38, 1549–1563 (1990).
doi: 10.1177/38.11.2212616 pubmed: 2212616
Yeo, T. K. et al. Distribution of biglycan and its propeptide form in rat and bovine aortic tissue. J. Vasc. Res. 32, 175–182 (1995).
doi: 10.1159/000159091 pubmed: 7772677
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
doi: 10.1038/s41586-020-2308-7 pubmed: 32461654 pmcid: 7334197
Cho, S. Y. et al. BGN mutations in X-linked spondyloepimetaphyseal dysplasia. Am. J. Hum. Genet. 98, 1243–1248 (2016).
doi: 10.1016/j.ajhg.2016.04.004 pubmed: 27236923 pmcid: 4908150
Chen, J., Sitsel, A., Benoy, V., Sepulveda, M. R. & Vangheluwe, P. Primary active Ca(2+) transport systems in health and disease. Cold Spring Harb. Perspect. Biol. 12, a035113 (2020).
Stafford, N., Wilson, C., Oceandy, D., Neyses, L. & Cartwright, E. J. The plasma membrane calcium ATPases and their role as major new players in human disease. Physiol. Rev. 97, 1089–1125 (2017).
doi: 10.1152/physrev.00028.2016 pubmed: 28566538
Association, W. M. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).
doi: 10.1001/jama.2013.281053
Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).
doi: 10.1002/humu.22844 pubmed: 26220891 pmcid: 4833888
Campens, L. et al. Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am. J. Cardiol. 114, 914–920 (2014).
doi: 10.1016/j.amjcard.2014.06.024 pubmed: 25092193
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).
doi: 10.1038/gim.2015.30 pubmed: 25741868 pmcid: 4544753
Abou Tayoun, A. N. et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 39, 1517–1524 (2018).
doi: 10.1002/humu.23626 pubmed: 30192042 pmcid: 6185798
Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e24 (2019).
doi: 10.1016/j.cell.2018.12.015 pubmed: 30661751

Auteurs

Josephina A N Meester (JAN)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Anne Hebert (A)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Maaike Bastiaansen (M)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Laura Rabaut (L)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Jarl Bastianen (J)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Nele Boeckx (N)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Kathryn Ashcroft (K)

Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals, NHS Foundation Trust, Leeds, UK.

Paldeep S Atwal (PS)

Genomic and Personalized Medicine, Atwal Clinic, Palm Beach, FL, USA.

Antoine Benichou (A)

Department of Internal and Vascular Medicine, CHU Nantes, Nantes Université, Nantes, France.

Clarisse Billon (C)

Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Paris, Assistance Publique Hôpitaux de Paris, Paris, France.
Université de Paris Cité, Inserm, PARCC, Paris, France.

Jan D Blankensteijn (JD)

Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands.

Paul Brennan (P)

Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Stephanie A Bucks (SA)

GeneDx LLC, Gaithersburg, MD, USA.

Ian M Campbell (IM)

Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Solène Conrad (S)

Service de Génétique Médicale, CHU Nantes, Nantes, France.

Stephanie L Curtis (SL)

Bristol Heart Institute, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK.

Majed Dasouki (M)

Department of Medical Genetics & Genomics, AdventHealth Medical Group, Orlando, FL, USA.

Carolyn L Dent (CL)

South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Bristol, UK.

James Eden (J)

North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK.

Himanshu Goel (H)

Hunter Genetics, Waratah, NSW, Australia.

Verity Hartill (V)

Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals, NHS Foundation Trust, Leeds, UK.
Leeds Institute of Medical Research, University of Leeds, Leeds, UK.

Arjan C Houweling (AC)

Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Bertrand Isidor (B)

Service de Génétique Médicale, CHU Nantes, Nantes, France.

Nicola Jackson (N)

Clinical Genetics Service, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.

Pieter Koopman (P)

Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium.

Anita Korpioja (A)

Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.

Minna Kraatari-Tiri (M)

Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.

Liina Kuulavainen (L)

Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Kelvin Lee (K)

Department of Medical Genetics & Genomics, AdventHealth Medical Group, Orlando, FL, USA.

Karen J Low (KJ)

Clinical Genetics Department, University Hospitals Bristol and Weston NHS Foundation Trust St Michael's Hospital, Bristol, UK.
University of Bristol, Canynge Hall, Bristol, UK.

Alan C Lu (AC)

Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Morgan L McManus (ML)

Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Stephen P Oakley (SP)

John Hunter Hospital, New Lambton Heights, NSW, Australia.
College of Health, Medicine and Wellbeing, School of Medicine, University of Newcastle, Newcastle, NSW, Australia.

James Oliver (J)

Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Manchester, UK.

Nicole M Organ (NM)

John Hunter Hospital, New Lambton Heights, NSW, Australia.

Eline Overwater (E)

Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.

Nicole Revencu (N)

Center for Human Genetics, Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium.

Alison H Trainer (AH)

Department of Genomic Medicine, The Royal Melbourne Hospital and University of Melbourne, Parkville, Melbourne, VIC, Australia.

Bhavya Trivedi (B)

Department of Medical Genetics & Genomics, AdventHealth Medical Group, Orlando, FL, USA.

Claire L S Turner (CLS)

Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.

Rebecca Whittington (R)

South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Bristol, UK.

Andreas Zankl (A)

Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia.
Garvan Institute of Medical Research, Sydney, NSW, Australia.

Dominica Zentner (D)

Department of Genomic Medicine, The Royal Melbourne Hospital and University of Melbourne, Parkville, Melbourne, VIC, Australia.

Lut Van Laer (L)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Aline Verstraeten (A)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Bart L Loeys (BL)

Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium. bart.loeys@uantwerpen.be.
Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. bart.loeys@uantwerpen.be.

Classifications MeSH