A precision functional atlas of personalized network topography and probabilities.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
26 Mar 2024
26 Mar 2024
Historique:
received:
14
02
2022
accepted:
08
02
2024
medline:
27
3
2024
pubmed:
27
3
2024
entrez:
27
3
2024
Statut:
aheadofprint
Résumé
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.
Identifiants
pubmed: 38532024
doi: 10.1038/s41593-024-01596-5
pii: 10.1038/s41593-024-01596-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : R01MH115357-02S1
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH096773
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH115357
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01EB022573
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 37MH125829
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH096773
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH115357
Informations de copyright
© 2024. The Author(s).
Références
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579
pmcid: 4990127
doi: 10.1038/nature18933
Wang, D. et al. Parcellating cortical functional networks in individuals. Nat. Neurosci. 18, 1853–1860 (2015).
pubmed: 26551545
pmcid: 4661084
doi: 10.1038/nn.4164
Fan, L. et al. The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).
pubmed: 27230218
pmcid: 4961028
doi: 10.1093/cercor/bhw157
Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).
pubmed: 21832190
pmcid: 3167149
doi: 10.1523/JNEUROSCI.2180-11.2011
Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).
pubmed: 25316338
doi: 10.1093/cercor/bhu239
Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723
doi: 10.1152/jn.00338.2011
Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).
pubmed: 22099467
pmcid: 3222858
doi: 10.1016/j.neuron.2011.09.006
Cui, Z. et al. Individual variation in functional topography of association networks in youth. Neuron 106, 340–353 (2020).
pubmed: 32078800
pmcid: 7182484
doi: 10.1016/j.neuron.2020.01.029
Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).
pubmed: 28757305
pmcid: 5576360
doi: 10.1016/j.neuron.2017.07.011
Gratton, C. et al. Defining individual-specific functional neuroanatomy for precision psychiatry. Biol. Psychiatry 88, 28–39 (2020).
pubmed: 31916942
doi: 10.1016/j.biopsych.2019.10.026
Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).
pubmed: 26212711
pmcid: 4642864
doi: 10.1016/j.neuron.2015.06.037
Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cereb. Cortex 5, 323–337 (1995).
pubmed: 7580125
doi: 10.1093/cercor/5.4.323
Feczko, E. et al. Adolescent brain cognitive development (ABCD) community MRI collection and utilities. Preprint at bioRxiv https://doi.org/10.1101/2021.07.09.451638 (2021).
Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).
pubmed: 35296861
pmcid: 8991999
doi: 10.1038/s41586-022-04492-9
Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).
pubmed: 22658708
pmcid: 4120275
doi: 10.1016/j.biopsych.2012.04.028
Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of TMS for depression. Biol. Psychiatry 90, 689–700 (2021).
pubmed: 32800379
doi: 10.1016/j.biopsych.2020.05.033
Seitzman, B. A. et al. Trait-like variants in human functional brain networks. Proc. Natl Acad. Sci. USA 116, 22851–22861 (2019).
pubmed: 31611415
pmcid: 6842602
doi: 10.1073/pnas.1902932116
Fair, D. A. et al. Functional brain networks develop from a ‘local to distributed’ organization. PLoS Comput. Biol. 5, e1000381 (2009).
pubmed: 19412534
pmcid: 2671306
doi: 10.1371/journal.pcbi.1000381
Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).
pubmed: 26648521
doi: 10.1038/ncomms9885
Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).
pubmed: 29051027
doi: 10.1016/j.dcn.2017.10.002
Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).
pubmed: 29567376
pmcid: 5999559
doi: 10.1016/j.dcn.2018.03.001
Dworetsky, A. et al. Probabilistic mapping of human functional brain networks identifies regions of high group consensus. Neuroimage 237, 118164 (2021).
pubmed: 34000397
doi: 10.1016/j.neuroimage.2021.118164
Gordon, E. M., Laumann, T. O., Adeyemo, B. & Petersen, S. E. Individual variability of the system-level organization of the human brain. Cereb. Cortex 27, 386–399 (2017).
pubmed: 26464473
Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 (2018).
pubmed: 29673485
pmcid: 5912345
doi: 10.1016/j.neuron.2018.03.035
Wang, X. et al. Probabilistic MRI brain anatomical atlases based on 1,000 Chinese subjects. PLoS ONE 8, e50939 (2013).
pubmed: 23341878
doi: 10.1371/journal.pone.0050939
Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54, 313–327 (2011).
pubmed: 20656036
doi: 10.1016/j.neuroimage.2010.07.033
Mazziotta, J. et al. A four-dimensional probabilistic atlas of the human brain. J. Am. Med. Inform. Assoc. 8, 401–430 (2001).
pubmed: 11522763
pmcid: 131040
doi: 10.1136/jamia.2001.0080401
Tyszka, J. M., Michael Tyszka, J. & Pauli, W. M. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template. Hum. Brain Mapp. 37, 3979–3998 (2016).
pubmed: 27354150
pmcid: 5087325
doi: 10.1002/hbm.23289
Keuken, M. C. & Forstmann, B. U. A probabilistic atlas of the basal ganglia using 7 T MRI. Data Brief 4, 577–582 (2015).
pubmed: 26322322
pmcid: 4543077
doi: 10.1016/j.dib.2015.07.028
Pauli, W. M., Nili, A. N. & Michael Tyszka, J. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).
pubmed: 29664465
pmcid: 5903366
doi: 10.1038/sdata.2018.63
Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
pubmed: 18216267
pmcid: 2234100
doi: 10.1073/pnas.0706851105
Li, H., Satterthwaite, T. D. & Fan, Y. Large-scale sparse functional networks from resting state fMRI. Neuroimage 156, 1–13 (2017).
pubmed: 28483721
doi: 10.1016/j.neuroimage.2017.05.004
Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).
pubmed: 22219283
pmcid: 6621313
doi: 10.1523/JNEUROSCI.3689-11.2012
Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. S. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).
pubmed: 23986239
pmcid: 3810536
doi: 10.1523/JNEUROSCI.0570-13.2013
Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).
pubmed: 30420501
pmcid: 6275484
doi: 10.1073/pnas.1804876115
Somerville, L. H. et al. The Lifespan Human Connectome Project in Development: a large-scale study of brain connectivity development in 5–21 year olds. Neuroimage 183, 456–468 (2018).
pubmed: 30142446
doi: 10.1016/j.neuroimage.2018.08.050
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
pubmed: 22019881
doi: 10.1016/j.neuroimage.2011.10.018
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).
pubmed: 22366334
doi: 10.1016/j.neuroimage.2012.02.018
Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).
pubmed: 29878084
doi: 10.1093/cercor/bhy123
Yeo, B. T. T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 26, 465 (2016).
pubmed: 26508334
doi: 10.1093/cercor/bhv260
Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl Acad. Sci. USA 104, 7327–7331 (2007).
pubmed: 17452639
pmcid: 1855072
doi: 10.1073/pnas.0611034104
Harrison, S. J. et al. Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109, 217–231 (2015).
pubmed: 25598050
doi: 10.1016/j.neuroimage.2015.01.013
Feczko, E., Earl, E., Perrone, A. & Fair, D. ABCD-BIDS Community Collection (ABCC). OSF osf.io/psv5m (2020).
Cui, Z. et al. Linking individual differences in personalized functional network topography to psychopathology in youth. Biol. Psychiatry 92, 973–983 (2022).
pubmed: 35927072
pmcid: 10040299
doi: 10.1016/j.biopsych.2022.05.014
Marek, S. et al. Spatial and temporal organization of the individual human cerebellum. Neuron 100, 977–993 (2018).
pubmed: 30473014
pmcid: 6351081
doi: 10.1016/j.neuron.2018.10.010
Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).
pubmed: 10548103
doi: 10.1038/44565
Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).
pubmed: 19211893
pmcid: 2750039
doi: 10.1523/JNEUROSCI.5062-08.2009
Miranda-Dominguez, O. et al. Connectotyping: model based fingerprinting of the functional connectome. PLoS ONE 9, e111048 (2014).
pubmed: 25386919
pmcid: 4227655
doi: 10.1371/journal.pone.0111048
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
pubmed: 28981612
doi: 10.1093/cercor/bhx179
Thompson, W. K. et al. The structure of cognition in 9 and 10 year-old children and associations with problem behaviors: findings from the ABCD study’s baseline neurocognitive battery. Dev. Cogn. Neurosci. 36, 100606 (2019).
pubmed: 30595399
doi: 10.1016/j.dcn.2018.12.004
Luciana, M. et al. Adolescent neurocognitive development and impacts of substance use: overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 32, 67–79 (2018).
pubmed: 29525452
pmcid: 6039970
doi: 10.1016/j.dcn.2018.02.006
Marek, S. et al. Publisher correction: reproducible brain-wide association studies require thousands of individuals. Nature 605, E11 (2022).
pubmed: 35534626
pmcid: 9132768
doi: 10.1038/s41586-022-04692-3
Tervo-Clemmens, B. et al. Reply to: multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E8–E12 (2023).
pubmed: 36890374
pmcid: 9995264
doi: 10.1038/s41586-023-05746-w
Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).
pubmed: 28728026
pmcid: 5519493
doi: 10.1016/j.neuron.2017.06.038
Yang, J. & Leskovec, J. Overlapping community detection at scale. in Proceedings of the Sixth ACM International Conference on Web Search and Data Mining—WSDM’13 587–596 (ACM, 2013); https://doi.org/10.1145/2433396.2433471
Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).
pubmed: 18354398
doi: 10.1038/nrn2331
Driver, J. & Noesselt, T. Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57, 11–23 (2008).
pubmed: 18184561
pmcid: 2427054
doi: 10.1016/j.neuron.2007.12.013
Gratton, C., Sun, H. & Petersen, S. E. Control networks and hubs. Psychophysiology https://doi.org/10.1111/psyp.13032 (2018).
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).
pubmed: 23972601
doi: 10.1016/j.neuron.2013.07.035
Gordon, E. M. et al. Three distinct sets of connector hubs integrate human brain function. Cell Rep. 24, 1687–1695 (2018).
pubmed: 30110625
pmcid: 6886580
doi: 10.1016/j.celrep.2018.07.050
Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B. & Zalesky, A. Functional magnetic resonance imaging–guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 78, 337–339 (2021).
pubmed: 33237320
doi: 10.1001/jamapsychiatry.2020.3794
Cash, R. F. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol. Psychiatry 86, e5–e7 (2019).
pubmed: 30670304
doi: 10.1016/j.biopsych.2018.12.002
Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).
pubmed: 34270921
pmcid: 8448958
doi: 10.1016/j.neuron.2021.06.016
Du, Y. & Fan, Y. Group information guided ICA for fMRI data analysis. Neuroimage 69, 157–197 (2013).
pubmed: 23194820
doi: 10.1016/j.neuroimage.2012.11.008
Hermosillo, R. J. M. et al. Polygenic risk score-derived subcortical connectivity mediates attention-deficit/hyperactivity disorder diagnosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 330–341 (2020).
pubmed: 32033925
Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 1, 15020 (2015).
pubmed: 27189265
doi: 10.1038/nrdp.2015.20
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Klein, A. & Tourville, J. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012).
pubmed: 23227001
pmcid: 3514540
doi: 10.3389/fnins.2012.00171
Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010).
pubmed: 20547229
doi: 10.1016/j.neuroimage.2010.06.010
Alexander, B. et al. Desikan-Killiany-Tourville Atlas compatible version of M-CRIB neonatal parcellated whole brain atlas: the M-CRIB 2.0. Front. Neurosci. 13, 34 (2019).
pubmed: 30804737
pmcid: 6371012
doi: 10.3389/fnins.2019.00034
Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Melbourne Children’s Regional Infant Brain (M-CRIB) atlas. Neuroimage 147, 841–851 (2017).
pubmed: 27725314
doi: 10.1016/j.neuroimage.2016.09.068
Kong, R. et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).
pubmed: 33942058
pmcid: 8757323
doi: 10.1093/cercor/bhab101
Fair, D. A. et al. The maturing architecture of the brain’s default network. Proc. Natl Acad. Sci. USA 105, 4028–4032 (2008).
pubmed: 18322013
pmcid: 2268790
doi: 10.1073/pnas.0800376105
Vizioli, L. et al. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat. Commun. 12, 5181 (2021).
pubmed: 34462435
pmcid: 8405721
doi: 10.1038/s41467-021-25431-8
Baijot, J. et al. Signal quality as Achilles’ heel of graph theory in functional magnetic resonance imaging in multiple sclerosis. Sci. Rep. 11, 7376 (2021).
pubmed: 33795779
pmcid: 8016888
doi: 10.1038/s41598-021-86792-0
Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am.J. Psychiatry179, 132–141 (2021).
pubmed: 34711062
doi: 10.1176/appi.ajp.2021.20101429
Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84, 28–37 (2018).
pubmed: 29274805
doi: 10.1016/j.biopsych.2017.10.028
Sporns, O., Honey, C. J. & Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007).
pubmed: 17940613
pmcid: 2013941
doi: 10.1371/journal.pone.0001049
Bagarinao, E. et al. Identifying the brain’s connector hubs at the voxel level using functional connectivity overlap ratio. Neuroimage 222, 117241 (2020).
pubmed: 32798679
doi: 10.1016/j.neuroimage.2020.117241
Silasi, G. & Murphy, T. H. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83, 1354–1368 (2014).
pubmed: 25233317
doi: 10.1016/j.neuron.2014.08.052
Lynch, C. J. et al. Precision inhibitory stimulation of individual-specific cortical hubs disrupts information processing in humans. Cereb. Cortex 29, 3912–3921 (2019).
pubmed: 30364937
doi: 10.1093/cercor/bhy270
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).
pubmed: 24231140
doi: 10.1016/j.tics.2013.09.012
Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl Acad. Sci. USA 112, E6798–E6807 (2015).
pubmed: 26598686
pmcid: 4679040
doi: 10.1073/pnas.1510619112
van den Heuvel, M. P. & Sporns, O. Rich-club organization of the Human Connectome. J. Neurosci. 31, 15775–15786 (2011).
pubmed: 22049421
pmcid: 6623027
doi: 10.1523/JNEUROSCI.3539-11.2011
Sporns, O. Networks of the Brain (MIT Press, 2010).
Braga, R. M., Van Dijk, K. R. A., Polimeni, J. R., Eldaief, M. C. & Buckner, R. L. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J. Neurophysiol. 121, 1513–1534 (2019).
pubmed: 30785825
pmcid: 6485740
doi: 10.1152/jn.00808.2018
Carmichael, S. T. & Price, J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).
pubmed: 8835726
doi: 10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#
Fair, D. A. et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front. Syst. Neurosci. 6, 80 (2012).
pubmed: 23382713
Kostović, I., Judas, M., Petanjek, Z. & Simić, G. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int. J. Psychophysiol. 19, 85–102 (1995).
pubmed: 7622411
doi: 10.1016/0167-8760(94)00081-O
Hagmann, P., Grant, P. E. & Fair, D. A. MR connectomics: a conceptual framework for studying the developing brain. Front. Syst. Neurosci. 6, 43 (2012).
pubmed: 22707934
pmcid: 3374479
doi: 10.3389/fnsys.2012.00043
Goldstone, A. et al. Sleep disturbance predicts depression symptoms in early adolescence: initial findings from the Adolescent Brain Cognitive Development study. J. Adolesc. Health 66, 567–574 (2020).
pubmed: 32046896
pmcid: 7183901
doi: 10.1016/j.jadohealth.2019.12.005
Karcher, N. R., O’Brien, K. J., Kandala, S. & Barch, D. M. Resting-state functional connectivity and psychotic-like experiences in childhood: results from the adolescent brain cognitive development study. Biol. Psychiatry 86, 7–15 (2019).
pubmed: 30850130
pmcid: 6588441
doi: 10.1016/j.biopsych.2019.01.013
Marek, S. et al. Identifying reproducible individual differences in childhood functional brain networks: an ABCD study. Dev. Cogn. Neurosci. 40, 100706 (2019).
pubmed: 31614255
pmcid: 6927479
doi: 10.1016/j.dcn.2019.100706
Guerrero, M. D., Barnes, J. D., Chaput, J.-P. & Tremblay, M. S. Screen time and problem behaviors in children: exploring the mediating role of sleep duration. Int. J. Behav. Nutr. Phys. Act. 16, 105 (2019).
pubmed: 31727084
pmcid: 6854622
doi: 10.1186/s12966-019-0862-x
Marshall, A. T. et al. Association of lead-exposure risk and family income with childhood brain outcomes. Nat. Med. 26, 91–97 (2020).
pubmed: 31932788
pmcid: 6980739
doi: 10.1038/s41591-019-0713-y
Scheinost, D. et al. Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks. IEEE Trans. Biomed. Eng. 63, 2540–2549 (2016).
pubmed: 27541328
pmcid: 5180443
doi: 10.1109/TBME.2016.2600248
Kelly, A. M. C. et al. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb. Cortex 19, 640–657 (2009).
pubmed: 18653667
doi: 10.1093/cercor/bhn117
Zhou, Y., Shi, L., Cui, X., Wang, S. & Luo, X. Functional connectivity of the caudal anterior cingulate cortex is decreased in autism. PLoS ONE 11, e0151879 (2016).
pubmed: 26985666
pmcid: 4795711
doi: 10.1371/journal.pone.0151879
Harms, M. P. et al. Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects. Neuroimage 183, 972–984 (2018).
pubmed: 30261308
doi: 10.1016/j.neuroimage.2018.09.060
Cordova, M. et al. ABCD Reproducible Matched Samples (ARMS) software. Open Science Framework https://doi.org/10.17605/OSF.IO/7XN4F (2020).
Karcher, N. R. & Barch, D. M. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 46, 131–142 (2021).
pubmed: 32541809
doi: 10.1038/s41386-020-0736-6
Dosenbach, N. U. F. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage 161, 80–93 (2017).
pubmed: 28803940
doi: 10.1016/j.neuroimage.2017.08.025
Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTs). Insight J. 2, 1–35 (2009).
Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
pubmed: 20378467
pmcid: 3071855
doi: 10.1109/TMI.2010.2046908
Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017).
pubmed: 28302591
doi: 10.1016/j.neuroimage.2017.03.020
Friston, K. J., Mechelli, A., Turner, R. & Price, C. J. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000).
pubmed: 10988040
doi: 10.1006/nimg.2000.0630
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).
pubmed: 23994314
doi: 10.1016/j.neuroimage.2013.08.048
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76, 439–441 (2013).
pubmed: 22440651
doi: 10.1016/j.neuroimage.2012.03.017
Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2009).
doi: 10.1140/epjst/e2010-01179-1
Gorgolewski, K. J. et al. A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures. Sci. Data 2, 140054 (2015).
pubmed: 25977805
pmcid: 4412153
doi: 10.1038/sdata.2014.54
Newton, A. T., Rogers, B. P., Gore, J. C. & Morgan, V. L. Improving measurement of functional connectivity through decreasing partial volume effects at 7T. Neuroimage 59, 2511–2517 (2012).
pubmed: 21925611
doi: 10.1016/j.neuroimage.2011.08.096
Alvarado, J. C., Rowland, B. A., Stanford, T. R. & Stein, B. E. A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus. Brain Res. 1242, 13–23 (2008).
pubmed: 18486113
pmcid: 2824893
doi: 10.1016/j.brainres.2008.03.074
Caspers, S. et al. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33, 430–448 (2006).
pubmed: 16949304
doi: 10.1016/j.neuroimage.2006.06.054
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
pubmed: 1822724
doi: 10.1093/cercor/1.1.1
Öngür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).
pubmed: 10731217
doi: 10.1093/cercor/10.3.206
Gates, K. M., Henry, T., Steinley, D. & Fair, D. A. A Monte Carlo evaluation of weighted community detection algorithms. Front. Neuroinform. 10, 45 (2016).
pubmed: 27891087
pmcid: 5102890
doi: 10.3389/fninf.2016.00045
Greene, D. J. et al. Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron 105, 742–758 (2020).
pubmed: 31836321
doi: 10.1016/j.neuron.2019.11.012
Cohen, A. D., Chang, C. & Wang, Y. Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity. Neuroimage 243, 118555 (2021).
pubmed: 34492293
doi: 10.1016/j.neuroimage.2021.118555
Lynch, C. J. et al. Rapid precision functional mapping of individuals using multi-echo fMRI. Cell Rep. 33, 108540 (2020).
pubmed: 33357444
pmcid: 7792478
doi: 10.1016/j.celrep.2020.108540
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
pubmed: 30532080
doi: 10.1038/s41592-018-0235-4
Marcus, D. S. et al. Informatics and data mining tools and strategies for the human connectome project. Front. Neuroinform. 5, 4 (2011).
pubmed: 21743807
pmcid: 3127103
doi: 10.3389/fninf.2011.00004
Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
pubmed: 22248573
doi: 10.1016/j.neuroimage.2012.01.021
Smith, M. S. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).
pubmed: 15501092
doi: 10.1016/j.neuroimage.2004.07.051