A precision functional atlas of personalized network topography and probabilities.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
26 Mar 2024
Historique:
received: 14 02 2022
accepted: 08 02 2024
medline: 27 3 2024
pubmed: 27 3 2024
entrez: 27 3 2024
Statut: aheadofprint

Résumé

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.

Identifiants

pubmed: 38532024
doi: 10.1038/s41593-024-01596-5
pii: 10.1038/s41593-024-01596-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : R01MH115357-02S1
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH096773
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH115357
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01EB022573
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 37MH125829
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH096773
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : MH115357

Informations de copyright

© 2024. The Author(s).

Références

Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579 pmcid: 4990127 doi: 10.1038/nature18933
Wang, D. et al. Parcellating cortical functional networks in individuals. Nat. Neurosci. 18, 1853–1860 (2015).
pubmed: 26551545 pmcid: 4661084 doi: 10.1038/nn.4164
Fan, L. et al. The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).
pubmed: 27230218 pmcid: 4961028 doi: 10.1093/cercor/bhw157
Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).
pubmed: 21832190 pmcid: 3167149 doi: 10.1523/JNEUROSCI.2180-11.2011
Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).
pubmed: 25316338 doi: 10.1093/cercor/bhu239
Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723 doi: 10.1152/jn.00338.2011
Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).
pubmed: 22099467 pmcid: 3222858 doi: 10.1016/j.neuron.2011.09.006
Cui, Z. et al. Individual variation in functional topography of association networks in youth. Neuron 106, 340–353 (2020).
pubmed: 32078800 pmcid: 7182484 doi: 10.1016/j.neuron.2020.01.029
Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).
pubmed: 28757305 pmcid: 5576360 doi: 10.1016/j.neuron.2017.07.011
Gratton, C. et al. Defining individual-specific functional neuroanatomy for precision psychiatry. Biol. Psychiatry 88, 28–39 (2020).
pubmed: 31916942 doi: 10.1016/j.biopsych.2019.10.026
Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).
pubmed: 26212711 pmcid: 4642864 doi: 10.1016/j.neuron.2015.06.037
Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cereb. Cortex 5, 323–337 (1995).
pubmed: 7580125 doi: 10.1093/cercor/5.4.323
Feczko, E. et al. Adolescent brain cognitive development (ABCD) community MRI collection and utilities. Preprint at bioRxiv https://doi.org/10.1101/2021.07.09.451638 (2021).
Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).
pubmed: 35296861 pmcid: 8991999 doi: 10.1038/s41586-022-04492-9
Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).
pubmed: 22658708 pmcid: 4120275 doi: 10.1016/j.biopsych.2012.04.028
Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of TMS for depression. Biol. Psychiatry 90, 689–700 (2021).
pubmed: 32800379 doi: 10.1016/j.biopsych.2020.05.033
Seitzman, B. A. et al. Trait-like variants in human functional brain networks. Proc. Natl Acad. Sci. USA 116, 22851–22861 (2019).
pubmed: 31611415 pmcid: 6842602 doi: 10.1073/pnas.1902932116
Fair, D. A. et al. Functional brain networks develop from a ‘local to distributed’ organization. PLoS Comput. Biol. 5, e1000381 (2009).
pubmed: 19412534 pmcid: 2671306 doi: 10.1371/journal.pcbi.1000381
Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).
pubmed: 26648521 doi: 10.1038/ncomms9885
Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).
pubmed: 29051027 doi: 10.1016/j.dcn.2017.10.002
Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).
pubmed: 29567376 pmcid: 5999559 doi: 10.1016/j.dcn.2018.03.001
Dworetsky, A. et al. Probabilistic mapping of human functional brain networks identifies regions of high group consensus. Neuroimage 237, 118164 (2021).
pubmed: 34000397 doi: 10.1016/j.neuroimage.2021.118164
Gordon, E. M., Laumann, T. O., Adeyemo, B. & Petersen, S. E. Individual variability of the system-level organization of the human brain. Cereb. Cortex 27, 386–399 (2017).
pubmed: 26464473
Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 (2018).
pubmed: 29673485 pmcid: 5912345 doi: 10.1016/j.neuron.2018.03.035
Wang, X. et al. Probabilistic MRI brain anatomical atlases based on 1,000 Chinese subjects. PLoS ONE 8, e50939 (2013).
pubmed: 23341878 doi: 10.1371/journal.pone.0050939
Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54, 313–327 (2011).
pubmed: 20656036 doi: 10.1016/j.neuroimage.2010.07.033
Mazziotta, J. et al. A four-dimensional probabilistic atlas of the human brain. J. Am. Med. Inform. Assoc. 8, 401–430 (2001).
pubmed: 11522763 pmcid: 131040 doi: 10.1136/jamia.2001.0080401
Tyszka, J. M., Michael Tyszka, J. & Pauli, W. M. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template. Hum. Brain Mapp. 37, 3979–3998 (2016).
pubmed: 27354150 pmcid: 5087325 doi: 10.1002/hbm.23289
Keuken, M. C. & Forstmann, B. U. A probabilistic atlas of the basal ganglia using 7 T MRI. Data Brief 4, 577–582 (2015).
pubmed: 26322322 pmcid: 4543077 doi: 10.1016/j.dib.2015.07.028
Pauli, W. M., Nili, A. N. & Michael Tyszka, J. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).
pubmed: 29664465 pmcid: 5903366 doi: 10.1038/sdata.2018.63
Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
pubmed: 18216267 pmcid: 2234100 doi: 10.1073/pnas.0706851105
Li, H., Satterthwaite, T. D. & Fan, Y. Large-scale sparse functional networks from resting state fMRI. Neuroimage 156, 1–13 (2017).
pubmed: 28483721 doi: 10.1016/j.neuroimage.2017.05.004
Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).
pubmed: 22219283 pmcid: 6621313 doi: 10.1523/JNEUROSCI.3689-11.2012
Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. S. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).
pubmed: 23986239 pmcid: 3810536 doi: 10.1523/JNEUROSCI.0570-13.2013
Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).
pubmed: 30420501 pmcid: 6275484 doi: 10.1073/pnas.1804876115
Somerville, L. H. et al. The Lifespan Human Connectome Project in Development: a large-scale study of brain connectivity development in 5–21 year olds. Neuroimage 183, 456–468 (2018).
pubmed: 30142446 doi: 10.1016/j.neuroimage.2018.08.050
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
pubmed: 22019881 doi: 10.1016/j.neuroimage.2011.10.018
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).
pubmed: 22366334 doi: 10.1016/j.neuroimage.2012.02.018
Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).
pubmed: 29878084 doi: 10.1093/cercor/bhy123
Yeo, B. T. T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 26, 465 (2016).
pubmed: 26508334 doi: 10.1093/cercor/bhv260
Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl Acad. Sci. USA 104, 7327–7331 (2007).
pubmed: 17452639 pmcid: 1855072 doi: 10.1073/pnas.0611034104
Harrison, S. J. et al. Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109, 217–231 (2015).
pubmed: 25598050 doi: 10.1016/j.neuroimage.2015.01.013
Feczko, E., Earl, E., Perrone, A. & Fair, D. ABCD-BIDS Community Collection (ABCC). OSF osf.io/psv5m (2020).
Cui, Z. et al. Linking individual differences in personalized functional network topography to psychopathology in youth. Biol. Psychiatry 92, 973–983 (2022).
pubmed: 35927072 pmcid: 10040299 doi: 10.1016/j.biopsych.2022.05.014
Marek, S. et al. Spatial and temporal organization of the individual human cerebellum. Neuron 100, 977–993 (2018).
pubmed: 30473014 pmcid: 6351081 doi: 10.1016/j.neuron.2018.10.010
Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).
pubmed: 10548103 doi: 10.1038/44565
Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).
pubmed: 19211893 pmcid: 2750039 doi: 10.1523/JNEUROSCI.5062-08.2009
Miranda-Dominguez, O. et al. Connectotyping: model based fingerprinting of the functional connectome. PLoS ONE 9, e111048 (2014).
pubmed: 25386919 pmcid: 4227655 doi: 10.1371/journal.pone.0111048
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
pubmed: 28981612 doi: 10.1093/cercor/bhx179
Thompson, W. K. et al. The structure of cognition in 9 and 10 year-old children and associations with problem behaviors: findings from the ABCD study’s baseline neurocognitive battery. Dev. Cogn. Neurosci. 36, 100606 (2019).
pubmed: 30595399 doi: 10.1016/j.dcn.2018.12.004
Luciana, M. et al. Adolescent neurocognitive development and impacts of substance use: overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 32, 67–79 (2018).
pubmed: 29525452 pmcid: 6039970 doi: 10.1016/j.dcn.2018.02.006
Marek, S. et al. Publisher correction: reproducible brain-wide association studies require thousands of individuals. Nature 605, E11 (2022).
pubmed: 35534626 pmcid: 9132768 doi: 10.1038/s41586-022-04692-3
Tervo-Clemmens, B. et al. Reply to: multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E8–E12 (2023).
pubmed: 36890374 pmcid: 9995264 doi: 10.1038/s41586-023-05746-w
Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).
pubmed: 28728026 pmcid: 5519493 doi: 10.1016/j.neuron.2017.06.038
Yang, J. & Leskovec, J. Overlapping community detection at scale. in Proceedings of the Sixth ACM International Conference on Web Search and Data Mining—WSDM’13 587–596 (ACM, 2013); https://doi.org/10.1145/2433396.2433471
Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).
pubmed: 18354398 doi: 10.1038/nrn2331
Driver, J. & Noesselt, T. Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57, 11–23 (2008).
pubmed: 18184561 pmcid: 2427054 doi: 10.1016/j.neuron.2007.12.013
Gratton, C., Sun, H. & Petersen, S. E. Control networks and hubs. Psychophysiology https://doi.org/10.1111/psyp.13032 (2018).
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).
pubmed: 23972601 doi: 10.1016/j.neuron.2013.07.035
Gordon, E. M. et al. Three distinct sets of connector hubs integrate human brain function. Cell Rep. 24, 1687–1695 (2018).
pubmed: 30110625 pmcid: 6886580 doi: 10.1016/j.celrep.2018.07.050
Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B. & Zalesky, A. Functional magnetic resonance imaging–guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 78, 337–339 (2021).
pubmed: 33237320 doi: 10.1001/jamapsychiatry.2020.3794
Cash, R. F. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol. Psychiatry 86, e5–e7 (2019).
pubmed: 30670304 doi: 10.1016/j.biopsych.2018.12.002
Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).
pubmed: 34270921 pmcid: 8448958 doi: 10.1016/j.neuron.2021.06.016
Du, Y. & Fan, Y. Group information guided ICA for fMRI data analysis. Neuroimage 69, 157–197 (2013).
pubmed: 23194820 doi: 10.1016/j.neuroimage.2012.11.008
Hermosillo, R. J. M. et al. Polygenic risk score-derived subcortical connectivity mediates attention-deficit/hyperactivity disorder diagnosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 330–341 (2020).
pubmed: 32033925
Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 1, 15020 (2015).
pubmed: 27189265 doi: 10.1038/nrdp.2015.20
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Klein, A. & Tourville, J. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012).
pubmed: 23227001 pmcid: 3514540 doi: 10.3389/fnins.2012.00171
Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010).
pubmed: 20547229 doi: 10.1016/j.neuroimage.2010.06.010
Alexander, B. et al. Desikan-Killiany-Tourville Atlas compatible version of M-CRIB neonatal parcellated whole brain atlas: the M-CRIB 2.0. Front. Neurosci. 13, 34 (2019).
pubmed: 30804737 pmcid: 6371012 doi: 10.3389/fnins.2019.00034
Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Melbourne Children’s Regional Infant Brain (M-CRIB) atlas. Neuroimage 147, 841–851 (2017).
pubmed: 27725314 doi: 10.1016/j.neuroimage.2016.09.068
Kong, R. et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).
pubmed: 33942058 pmcid: 8757323 doi: 10.1093/cercor/bhab101
Fair, D. A. et al. The maturing architecture of the brain’s default network. Proc. Natl Acad. Sci. USA 105, 4028–4032 (2008).
pubmed: 18322013 pmcid: 2268790 doi: 10.1073/pnas.0800376105
Vizioli, L. et al. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat. Commun. 12, 5181 (2021).
pubmed: 34462435 pmcid: 8405721 doi: 10.1038/s41467-021-25431-8
Baijot, J. et al. Signal quality as Achilles’ heel of graph theory in functional magnetic resonance imaging in multiple sclerosis. Sci. Rep. 11, 7376 (2021).
pubmed: 33795779 pmcid: 8016888 doi: 10.1038/s41598-021-86792-0
Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am.J. Psychiatry179, 132–141 (2021).
pubmed: 34711062 doi: 10.1176/appi.ajp.2021.20101429
Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84, 28–37 (2018).
pubmed: 29274805 doi: 10.1016/j.biopsych.2017.10.028
Sporns, O., Honey, C. J. & Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007).
pubmed: 17940613 pmcid: 2013941 doi: 10.1371/journal.pone.0001049
Bagarinao, E. et al. Identifying the brain’s connector hubs at the voxel level using functional connectivity overlap ratio. Neuroimage 222, 117241 (2020).
pubmed: 32798679 doi: 10.1016/j.neuroimage.2020.117241
Silasi, G. & Murphy, T. H. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83, 1354–1368 (2014).
pubmed: 25233317 doi: 10.1016/j.neuron.2014.08.052
Lynch, C. J. et al. Precision inhibitory stimulation of individual-specific cortical hubs disrupts information processing in humans. Cereb. Cortex 29, 3912–3921 (2019).
pubmed: 30364937 doi: 10.1093/cercor/bhy270
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).
pubmed: 24231140 doi: 10.1016/j.tics.2013.09.012
Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl Acad. Sci. USA 112, E6798–E6807 (2015).
pubmed: 26598686 pmcid: 4679040 doi: 10.1073/pnas.1510619112
van den Heuvel, M. P. & Sporns, O. Rich-club organization of the Human Connectome. J. Neurosci. 31, 15775–15786 (2011).
pubmed: 22049421 pmcid: 6623027 doi: 10.1523/JNEUROSCI.3539-11.2011
Sporns, O. Networks of the Brain (MIT Press, 2010).
Braga, R. M., Van Dijk, K. R. A., Polimeni, J. R., Eldaief, M. C. & Buckner, R. L. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J. Neurophysiol. 121, 1513–1534 (2019).
pubmed: 30785825 pmcid: 6485740 doi: 10.1152/jn.00808.2018
Carmichael, S. T. & Price, J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).
pubmed: 8835726 doi: 10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#
Fair, D. A. et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front. Syst. Neurosci. 6, 80 (2012).
pubmed: 23382713
Kostović, I., Judas, M., Petanjek, Z. & Simić, G. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int. J. Psychophysiol. 19, 85–102 (1995).
pubmed: 7622411 doi: 10.1016/0167-8760(94)00081-O
Hagmann, P., Grant, P. E. & Fair, D. A. MR connectomics: a conceptual framework for studying the developing brain. Front. Syst. Neurosci. 6, 43 (2012).
pubmed: 22707934 pmcid: 3374479 doi: 10.3389/fnsys.2012.00043
Goldstone, A. et al. Sleep disturbance predicts depression symptoms in early adolescence: initial findings from the Adolescent Brain Cognitive Development study. J. Adolesc. Health 66, 567–574 (2020).
pubmed: 32046896 pmcid: 7183901 doi: 10.1016/j.jadohealth.2019.12.005
Karcher, N. R., O’Brien, K. J., Kandala, S. & Barch, D. M. Resting-state functional connectivity and psychotic-like experiences in childhood: results from the adolescent brain cognitive development study. Biol. Psychiatry 86, 7–15 (2019).
pubmed: 30850130 pmcid: 6588441 doi: 10.1016/j.biopsych.2019.01.013
Marek, S. et al. Identifying reproducible individual differences in childhood functional brain networks: an ABCD study. Dev. Cogn. Neurosci. 40, 100706 (2019).
pubmed: 31614255 pmcid: 6927479 doi: 10.1016/j.dcn.2019.100706
Guerrero, M. D., Barnes, J. D., Chaput, J.-P. & Tremblay, M. S. Screen time and problem behaviors in children: exploring the mediating role of sleep duration. Int. J. Behav. Nutr. Phys. Act. 16, 105 (2019).
pubmed: 31727084 pmcid: 6854622 doi: 10.1186/s12966-019-0862-x
Marshall, A. T. et al. Association of lead-exposure risk and family income with childhood brain outcomes. Nat. Med. 26, 91–97 (2020).
pubmed: 31932788 pmcid: 6980739 doi: 10.1038/s41591-019-0713-y
Scheinost, D. et al. Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks. IEEE Trans. Biomed. Eng. 63, 2540–2549 (2016).
pubmed: 27541328 pmcid: 5180443 doi: 10.1109/TBME.2016.2600248
Kelly, A. M. C. et al. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb. Cortex 19, 640–657 (2009).
pubmed: 18653667 doi: 10.1093/cercor/bhn117
Zhou, Y., Shi, L., Cui, X., Wang, S. & Luo, X. Functional connectivity of the caudal anterior cingulate cortex is decreased in autism. PLoS ONE 11, e0151879 (2016).
pubmed: 26985666 pmcid: 4795711 doi: 10.1371/journal.pone.0151879
Harms, M. P. et al. Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects. Neuroimage 183, 972–984 (2018).
pubmed: 30261308 doi: 10.1016/j.neuroimage.2018.09.060
Cordova, M. et al. ABCD Reproducible Matched Samples (ARMS) software. Open Science Framework https://doi.org/10.17605/OSF.IO/7XN4F (2020).
Karcher, N. R. & Barch, D. M. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 46, 131–142 (2021).
pubmed: 32541809 doi: 10.1038/s41386-020-0736-6
Dosenbach, N. U. F. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage 161, 80–93 (2017).
pubmed: 28803940 doi: 10.1016/j.neuroimage.2017.08.025
Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTs). Insight J. 2, 1–35 (2009).
Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
pubmed: 20378467 pmcid: 3071855 doi: 10.1109/TMI.2010.2046908
Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017).
pubmed: 28302591 doi: 10.1016/j.neuroimage.2017.03.020
Friston, K. J., Mechelli, A., Turner, R. & Price, C. J. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000).
pubmed: 10988040 doi: 10.1006/nimg.2000.0630
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).
pubmed: 23994314 doi: 10.1016/j.neuroimage.2013.08.048
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76, 439–441 (2013).
pubmed: 22440651 doi: 10.1016/j.neuroimage.2012.03.017
Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2009).
doi: 10.1140/epjst/e2010-01179-1
Gorgolewski, K. J. et al. A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures. Sci. Data 2, 140054 (2015).
pubmed: 25977805 pmcid: 4412153 doi: 10.1038/sdata.2014.54
Newton, A. T., Rogers, B. P., Gore, J. C. & Morgan, V. L. Improving measurement of functional connectivity through decreasing partial volume effects at 7T. Neuroimage 59, 2511–2517 (2012).
pubmed: 21925611 doi: 10.1016/j.neuroimage.2011.08.096
Alvarado, J. C., Rowland, B. A., Stanford, T. R. & Stein, B. E. A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus. Brain Res. 1242, 13–23 (2008).
pubmed: 18486113 pmcid: 2824893 doi: 10.1016/j.brainres.2008.03.074
Caspers, S. et al. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33, 430–448 (2006).
pubmed: 16949304 doi: 10.1016/j.neuroimage.2006.06.054
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
pubmed: 1822724 doi: 10.1093/cercor/1.1.1
Öngür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).
pubmed: 10731217 doi: 10.1093/cercor/10.3.206
Gates, K. M., Henry, T., Steinley, D. & Fair, D. A. A Monte Carlo evaluation of weighted community detection algorithms. Front. Neuroinform. 10, 45 (2016).
pubmed: 27891087 pmcid: 5102890 doi: 10.3389/fninf.2016.00045
Greene, D. J. et al. Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron 105, 742–758 (2020).
pubmed: 31836321 doi: 10.1016/j.neuron.2019.11.012
Cohen, A. D., Chang, C. & Wang, Y. Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity. Neuroimage 243, 118555 (2021).
pubmed: 34492293 doi: 10.1016/j.neuroimage.2021.118555
Lynch, C. J. et al. Rapid precision functional mapping of individuals using multi-echo fMRI. Cell Rep. 33, 108540 (2020).
pubmed: 33357444 pmcid: 7792478 doi: 10.1016/j.celrep.2020.108540
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
pubmed: 30532080 doi: 10.1038/s41592-018-0235-4
Marcus, D. S. et al. Informatics and data mining tools and strategies for the human connectome project. Front. Neuroinform. 5, 4 (2011).
pubmed: 21743807 pmcid: 3127103 doi: 10.3389/fninf.2011.00004
Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
pubmed: 22248573 doi: 10.1016/j.neuroimage.2012.01.021
Smith, M. S. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).
pubmed: 15501092 doi: 10.1016/j.neuroimage.2004.07.051

Auteurs

Robert J M Hermosillo (RJM)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA. hermosir@umn.edu.
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA. hermosir@umn.edu.

Lucille A Moore (LA)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.

Eric Feczko (E)

Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.

Óscar Miranda-Domínguez (Ó)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.

Adam Pines (A)

Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA.

Ally Dworetsky (A)

Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Psychology, Northwestern University, Evanston, IL, USA.
Department of Psychology, Florida State University, Tallahassee, FL, USA.

Gregory Conan (G)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.

Michael A Mooney (MA)

Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA.
Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, USA.

Anita Randolph (A)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.

Alice Graham (A)

Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.

Babatunde Adeyemo (B)

Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.

Eric Earl (E)

Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA.

Anders Perrone (A)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.

Cristian Morales Carrasco (CM)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.

Johnny Uriarte-Lopez (J)

Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.

Kathy Snider (K)

Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.

Olivia Doyle (O)

Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.

Michaela Cordova (M)

Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA.
Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, USA.

Sanju Koirala (S)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.

Gracie J Grimsrud (GJ)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.

Nora Byington (N)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.

Steven M Nelson (SM)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.

Caterina Gratton (C)

Department of Psychology, Northwestern University, Evanston, IL, USA.
Department of Psychology, Florida State University, Tallahassee, FL, USA.
Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA.

Steven Petersen (S)

Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA.
Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.

Sarah W Feldstein Ewing (SW)

Department of Psychology, University of Rhode Island, Kingston, RI, USA.

Bonnie J Nagel (BJ)

Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.

Nico U F Dosenbach (NUF)

Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.

Theodore D Satterthwaite (TD)

Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA.
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.

Damien A Fair (DA)

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.

Classifications MeSH