Evaluation of Mastadenovirus and Rotavirus Presence in Phyllostomid, Vespertilionid, and Molossid Bats Captured in Rio Grande do Sul, Southern Brazil.

Chiropterans One Health Viruses Wildlife Zoonosis

Journal

Food and environmental virology
ISSN: 1867-0342
Titre abrégé: Food Environ Virol
Pays: United States
ID NLM: 101483831

Informations de publication

Date de publication:
26 Mar 2024
Historique:
received: 21 07 2023
accepted: 28 11 2023
medline: 27 3 2024
pubmed: 27 3 2024
entrez: 27 3 2024
Statut: aheadofprint

Résumé

Bat-borne viruses may affect public health and the global economy. These mammals have a wide geographical distribution and unique biological, physiological, and immunogenic characteristics, allowing the dissemination of many known and unknown viruses. Enteric viruses, such as adeno (AdV) and rotaviruses, are recognized as the main causative agents of disease and outbreaks. In the present study, the presence of viruses from Adenoviridae and Reoviridae families was evaluated in molossid, phyllostomid, and vespertilionid bats captured in Rio Grande do Sul, Southern Brazil, between September 2021 and July 2022. Sixty bat rectal swabs were analyzed by PCR. Eight (13.3%) samples were positive for adenovirus and classified as human mastadenovirus C (HAdV-C) (three samples) and HAdV-E (five samples) by sequencing followed by phylogenetic analysis. All samples were negative in rotavirus specific RT-PCR. This is the first study to describe the presence of HAdV in samples of Glossophaga soricina, Eptesicus brasiliensis, and Histiotus velatus. Furthermore, the presence of HAdV-E in bats was reported, which is unusual and may suggest that other HAdV genotypes, in addition to HAdV-C, may also be harbored by wild animals. The data generated in the present study reinforces the importance of eco-surveillance of viral agents related to diseases in humans and wild animals. In addition, it is essential to identify possible new hosts or reservoirs that increase the risk of spillover and dissemination of infectious pathogens, helping to prevent and control zoonotic diseases.

Identifiants

pubmed: 38532064
doi: 10.1007/s12560-023-09575-y
pii: 10.1007/s12560-023-09575-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Ai, L., Zhu, C., Zhang, W., He, T., Ke, Y., Wu, J., Yin, W., Zou, X., Ding, C., Luo, Y., Wang, C., Qian, H., & Tan, W. (2022). Genomic characteristics and pathogenicity of a new bat adenoviruses strains that was isolated in at sites along the southeastern coasts of the P. R. of China from 2015 to 2019. Virus Research, 308, 198653. https://doi.org/10.1016/j.virusres.2021.198653
doi: 10.1016/j.virusres.2021.198653 pubmed: 34896154
Asano, K. M., Gregori, F., Hora, A. S., Scheffer, K. C., Fahl, W. O., Iamamoto, K., Mori, E., Silva, F. D., Taniwaki, S. A., & Brandão, P. E. (2016). Group A rotavirus in Brazilian bats: Description of novel T15 and H15 genotypes. Archives of Virology, 161, 3225–3230. https://doi.org/10.1007/s00705-016-3010-9
doi: 10.1007/s00705-016-3010-9 pubmed: 27518402
Banerjee, A., Baker, M. L., Kulcsar, K., Misra, V., Plowright, R., & Mossman, K. (2020). Novel insights into immune systems of bats. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2020.00026
doi: 10.3389/fimmu.2020.00026 pubmed: 33488570 pmcid: 7530636
Banerjee, A., Kulcsar, K., Misra, V., Frieman, M., & Mossman, K. (2019). Bats and coronaviruses. Viruses, 11, 7–9. https://doi.org/10.3390/v11010041
doi: 10.3390/v11010041
Bosch, A., Guix, S., Sano, D., & Pintó, R. M. (2008). New tools for the study and direct surveillance of viral pathogens in water. Current Opinion in Biotechnology, 19, 295–301. https://doi.org/10.1016/j.copbio.2008.04.006
doi: 10.1016/j.copbio.2008.04.006 pubmed: 18508257 pmcid: 7126527
Chiappetta, C. M., Cibulski, S. P., Lima, F. E. S., Varela, A. P. M., Amorim, D. B., Tavares, M., & Roehe, P. M. (2017). Molecular detection of circovirus and adenovirus in feces of fur seals (Arctocephalus spp.). EcoHealth, 14, 69–77. https://doi.org/10.1007/s10393-016-1195-8
doi: 10.1007/s10393-016-1195-8 pubmed: 27803979
da Silva, L. C., Almeida, R. G., da Silva, P. H., Oprea, M., Mendes, P., Brito, D., & Bernardi Vieira, T. (2021). Temporal changes in the potential geographic distribution of Histiotus velatus (Chiroptera, Vespertilionidae), the “decade effect.” Ecology and Evolution, 11(23), 16972–16980. https://doi.org/10.1002/ece3.8333
doi: 10.1002/ece3.8333 pubmed: 34938485 pmcid: 8668744
Demoliner, M., Gularte, J. S., Girardi, V., Eisen, A. K., de Souza, F. G., Staggemeier, R., Henzel, A., & Spilki, F. R. (2021). Microbial source tracking in small farms: Use of different methods for adenovirus detection. Water, Air, and Soil Pollution, 232, 63. https://doi.org/10.1007/s11270-021-05011-8
doi: 10.1007/s11270-021-05011-8
Egert-Berg, K., Handel, M., Goldshtein, A., Eitan, O., Borissov, I., & Yovel, Y. (2021). Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biology, 19, 123. https://doi.org/10.1186/s12915-021-01060-x
doi: 10.1186/s12915-021-01060-x pubmed: 34134697 pmcid: 8210355
Ellwanger, J. H., Fearnside, P. M., Ziliotto, M., Valverde-Villegas, J. M., Veiga, A. B. G. D., Vieira, G. F., Bach, E., Cardoso, J. C., Müller, N. F. D., Lopes, G., Caesar, L., Kulmann-Leal, B., Kaminski, V. L., Silveira, E. S., Spilki, F. R., Weber, M. N., Almeida, S. E. M., Hora, V. P. D., & Chies, J. A. B. (2022). Synthesizing the connections between environmental disturbances and zoonotic spillover. Anais da Academia Brasileira de Ciências, 94, e20211530. https://doi.org/10.1590/0001-3765202220211530
doi: 10.1590/0001-3765202220211530 pubmed: 36169531
Finoketti, F., dos Santos, R. N., Campos, A. A. S., Zani, A. L. D. S., Barboza, C. M., Fernandes, M. E. S., de Souza, T. C. P., dos Santos, D. D., Bortolanza, G. W., Filho, H. O., Roehe, P. M., Franco, A. C., & de CarvalhoRuthnerBatista, H. B. (2019). Detection of adenovirus, papillomavirus and parvovirus in Brazilian bats of the species Artibeus lituratus and Sturnira lilium. Archives of Virology, 164, 1015–1025. https://doi.org/10.1007/s00705-018-04129-1
doi: 10.1007/s00705-018-04129-1 pubmed: 30740637 pmcid: 7086806
Gartner, L. E., Demoliner, M., Girardi, V., de Oliveira, K. G., de Souza, F. G., & Henzel, A. (2022). Detection of Protoparvovirus in wastewater and human adenovirus in a green leafy vegetable in an environmental education center in southern Brazil. Water Policy, 24(12), 1827–1841. https://doi.org/10.2166/wp.2022.062
doi: 10.2166/wp.2022.062
Gularte, J. S., de Oliveira, Hansen R., Demoliner, M., Fiutowski, J., Eisen, A. K., Heldt, F. H., Rodrigues de Almeida, P., Müller de Quevedo, D., Rubahn, H. G., & Rosado Spilki, F. (2021). Functionalized surfaces as a tool for virus sensing: A demonstration of human mastadenovirus detection in environmental waters. Chemosensors, 9, 19. https://doi.org/10.3390/chemosensors9020019
doi: 10.3390/chemosensors9020019
Hackenbrack, N., Rogers, M. B., Ashley, R. E., Keel, M. K., Kubiski, S. V., Bryan, J. A., Ghedin, E., Holmes, E. C., Hafenstein, S. L., & Allison, A. B. (2017). Evolution and cryo-electron microscopy capsid structure of a North American bat adenovirus and its relationship to other mastadenoviruses. Journal of Virology, 91, e0150416. https://doi.org/10.1128/jvi.01504-16
doi: 10.1128/jvi.01504-16
Iglesias-Caballero, M., Juste, J., Vázquez-Morón, S., Falcon, A., Aznar-Lopez, C., Ibáñez, C., Pozo, F., Ruiz, G., Berciano, J. M., Garin, I., Aihartza, J., Echevarría, J. E., & Casas, I. (2018). New adenovirus groups in western palaearctic bats. Viruses, 10, 443. https://doi.org/10.3390/v10080443
doi: 10.3390/v10080443 pubmed: 30127258 pmcid: 6116233
Irving, A. T., Ahn, M., Goh, G., Anderson, D. E., & Wang, L. F. (2021). Lessons from the host defences of bats, a unique viral reservoir. Nature. https://doi.org/10.1038/s41586-020-03128-0
doi: 10.1038/s41586-020-03128-0 pubmed: 33473223
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
doi: 10.1093/molbev/mst010 pubmed: 23329690 pmcid: 3603318
Kim, H. K., Yoon, S. W., Kim, D. J., Koo, B. S., Noh, J. Y., Kim, J. H., Choi, Y. G., Na, W., Chang, K. T., Song, D., & Jeong, D. G. (2016). Detection of severe acute respiratory syndrome-like, middle east respiratory syndrome-like bat coronaviruses and group h rotavirus in faeces of Korean Bats. Transboundary and emerging diseases, 63(4), 365–372. https://doi.org/10.1111/tbed.12515
doi: 10.1111/tbed.12515 pubmed: 27213718 pmcid: 7169817
Kittigul, L., Ekchaloemkiet, S., Utrarachkij, F., Siripanichgon, K., Sujirarat, D., Pungchitton, S., & Boonthum, A. (2005). An efficient virus concentration method and RT-nested PCR for detection of rotaviruses in environmental water samples. Journal of Virological Methods, 124, 117–122. https://doi.org/10.1016/j.jviromet.2004.11.013
doi: 10.1016/j.jviromet.2004.11.013 pubmed: 15664059
Kosulin, K., Geiger, E., Vécsei, A., Huber, W. D., Rauch, M., Brenner, E., Wrba, F., Hammer, K., Innerhofer, A., Pötschger, U., Lawitschka, A., Matthes-Leodolter, S., Fritsch, G., & Lion, T. (2016). Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clinical Microbiology and Infection, 22, 381.e1-381.e8. https://doi.org/10.1016/j.cmi.2015.12.013
doi: 10.1016/j.cmi.2015.12.013 pubmed: 26711435
Kuzmin, I. V., Mayer, A. E., Niezgoda, M., Markotter, W., Agwanda, B., Breiman, R. F., & Rupprecht, C. E. (2010). Shimoni bat virus, a new representative of the Lyssavirus genus. Virus Research, 149, 197–210. https://doi.org/10.1016/j.virusres.2010.01.018
doi: 10.1016/j.virusres.2010.01.018 pubmed: 20138934
Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K., & Munster, V. J. (2020). Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-020-0394-z
doi: 10.1038/s41579-020-0394-z pubmed: 32528128 pmcid: 7289071
Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Yuan, J., Wang, L. F., & Shi, Z. (2010). Host range, prevalence, and genetic diversity of adenoviruses in bats. Journal of Virology, 84, 3889–3897. https://doi.org/10.1128/jvi.02497-09
doi: 10.1128/jvi.02497-09 pubmed: 20089640 pmcid: 2849498
Lima, F. E. D. S., Cibulski, S. P., Elesbao, F., Carnieli Junior, P., Batista, H. B. D. C. R., Roehe, P. M., & Franco, A. C. (2013). First detection of adenovirus in the vampire bat (Desmodus rotundus) in Brazil. Virus Genes, 47, 378–381. https://doi.org/10.1007/s11262-013-0947-6
doi: 10.1007/s11262-013-0947-6 pubmed: 23828618 pmcid: 7088603
Luis, A. D., Hayman, D. T., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R., Mills, J. N., Timonin, M. E., Willis, C. K., Cunningham, A. A., Fooks, A. R., Rupprecht, C. E., Wood, J. L., & Webb, C. T. (2013). A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proceedings of the Royal Society B: Biological Sciences, 280, 20122753. https://doi.org/10.1098/rspb.2012.2753
doi: 10.1098/rspb.2012.2753 pmcid: 3574368
Menezes, P. Q., Silva, T. T., Simas, F. B., Brauner, R. K., Bandarra, P., Demoliner, M., Eisen, A. K. A., Rodrigues, P., Spilki, F. R., Fischer, G., & Hübner, S. O. (2020). Molecular detection of human adenovirus and rotavirus in feces of white-eared opossums. EcoHealth, 17, 326–332. https://doi.org/10.1007/s10393-020-01497-6
doi: 10.1007/s10393-020-01497-6 pubmed: 33236325
Monteiro, G. S., Fleck, J. D., Kluge, M., Rech, N. K., Soliman, M. C., Staggemeier, R., Rodrigues, M. T., Barros, M. P., Heinzelmann, L. S., & Spilki, F. R. (2015). Adenoviruses of canine and human origins in stool samples from free-living pampas foxes (Lycalopex gymnocercus) and crab-eating foxes (Cerdocyon thous) in São Francisco de Paula, Rio dos Sinos basin. Brazilian Journal of Biology, 75, S11–S16. https://doi.org/10.1590/1519-6984.0313
doi: 10.1590/1519-6984.0313
Nakamura, N., Kobayashi, S., Minagawa, H., Matsushita, T., Sugiura, W., & Iwatani, Y. (2016). Molecular epidemiology of enteric viruses in patients with acute gastroenteritis in Aichi prefecture, Japan, 2008/09-2013/14. Journal of Medical Virology, 88, 1180–1186. https://doi.org/10.1002/jmv.24445
doi: 10.1002/jmv.24445 pubmed: 26647761
Oleaga, A., Balseiro, A., Espí, A., & Royo, L. J. (2022). Wolf (Canis lupus) as canine adenovirus type 1 (CAdV-1) sentinel for the endangered cantabrian brown bear (Ursus arctos arctos). Transboundary and Emerging Diseases, 69, 516–523. https://doi.org/10.1111/tbed.14010
doi: 10.1111/tbed.14010 pubmed: 33527683
Oliveira, F. W., Santin, M., Schindler, Z., Hennayra Corá, D., Thiel, N., Siebel, A. M., & Galiano, D. (2020). Oxidative state of the frugivorous bat Sturnira lilium (Chiroptera: Phyllostomidae) in agricultural and urban areas of southern Brazil. Environmental Science and Pollution Research, 27, 30868–30874. https://doi.org/10.1007/s11356-020-09552-z/Published
doi: 10.1007/s11356-020-09552-z/Published pubmed: 32524408
Parashar, U. D., Gibson, C. J., Bresee, J. S., & Glass, R. I. (2006). Rotavirus and severe childhood diarrhea. Emerging Infectious Diseases, 12, 304–306.
doi: 10.3201/eid1202.050006 pubmed: 16494759 pmcid: 3373114
Prado, T., & Miagostovich, M. P. (2014). Environmental virology and sanitation in Brazil: A narrative review. Cadernos De Saúde Publica, 30, 1367–1378. https://doi.org/10.1590/0102-311X00109213
doi: 10.1590/0102-311X00109213 pubmed: 25166934
Radke, J. R., & Cook, J. L. (2018). Human adenovirus infections: Update and consideration of mechanisms of viral persistence. Current Opinion in Infectious Diseases. https://doi.org/10.1097/QCO.0000000000000451
doi: 10.1097/QCO.0000000000000451 pubmed: 29601326 pmcid: 6367924
Raut, C. G., Yadav, P. D., Towner, J. S., Amman, B. R., Erickson, B. R., Cannon, D. L., Sivaram, A., Basu, A., Nichol, S. T., Mishra, A. C., & Mourya, D. T. (2012). Isolation of a novel adenovirus from Rousettus leschenaultii bats from India. Intervirology, 55, 488–490. https://doi.org/10.1159/000337026
doi: 10.1159/000337026 pubmed: 22572722
Sita, A., Birlem, G. E., de Almeida, P. R., Stein, J. F., Mallmann, L., Demoliner, M., da Silva, M. S., Gularte, J. S., Hansen, A. W., Fleck, J. D., Spilki, F. R., Higino, S. S. S., de Azevedo, S. S., da Rocha, D. T., & Weber, M. N. (2022). Detection of human Mastadenovirus C in wild guinea pigs (Cavia aperea aperea) feces. Brazilian Journal of Microbiology, 53, 2101–2105. https://doi.org/10.1007/s42770-022-00829-
doi: 10.1007/s42770-022-00829- pubmed: 36104574 pmcid: 9679049
Soares, V. M., dos Santos, E. A. R., Tadielo, L. E., Cerqueira-Cézar, C. K., da CruzEncideSampaio, A. N., Eisen, A. K. A., de Oliveira, K. G., Padilha, M. B., de Moraes Guerra, M. E., Gasparetto, R., Brum, M. C. S., Traesel, C. K., Henzel, A., Spilki, F. R., & Pereira, J. G. (2022). Detection of adenovirus, rotavirus, and hepatitis E virus in meat cuts marketed in Uruguaiana, Rio Grande do Sul Brazil. One Health, 14, 100377. https://doi.org/10.1016/j.onehlt.2022.100377
doi: 10.1016/j.onehlt.2022.100377 pubmed: 35257024 pmcid: 8897626
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
doi: 10.1093/molbev/msab120 pubmed: 33892491 pmcid: 8233496
Vecchia, A. D., Fleck, J. D., Comerlato, J., Kluge, M., Bergamaschi, B., da Silva, J. V., da Luz, R. B., Teixeira, T. F., Garbinatto, G. N., Oliveira, D. V., Zanin, J. G., van der Sand, S., Frazzon, A. P., Franco, A. C., Roehe, P. M., & Spilki, F. R. (2012). First description of Adenovirus, Enterovirus, Rotavirus and Torque teno virus in water samples collected from the Arroio Diluvio, Porto Alegre, Brazil. Brazilian Journal of Biology, 72, 323–329.
doi: 10.1590/S1519-69842012000200013
Waruhiu, C., Ommeh, S., Obanda, V., Agwanda, B., Gakuya, F., Ge, X. Y., Yang, X. L., Wu, L. J., Zohaib, A., Hu, B., & Shi, Z. L. (2017). Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virologica Sinica, 32, 101–114. https://doi.org/10.1007/s12250-016-3930-2
doi: 10.1007/s12250-016-3930-2 pubmed: 28393313 pmcid: 6702250

Auteurs

Alexandre Sita (A)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Gabriela Espíndola Birlem (GE)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Deivid de Souza da Silva (D)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Gabriela Mattos Possamai (GM)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Karla Petry (K)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Paula Rodrigues de Almeida (PR)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.
Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil.

Larissa Mallmann (L)

Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil.

Janaína Franciele Stein (JF)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Meriane Demoliner (M)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Juliana Schons Gularte (JS)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Alana Witt Hansen (AW)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

André Alberto Witt (AA)

Secretaria da Agricultura, Pecuária, Produção Sustentável e Irrigação Do Rio Grande Do Sul (SEAPI-RS), Porto Alegre, Rio Grande Do Sul, Brazil.

Caroline Rigotto (C)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Juliane Deise Fleck (JD)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.

Fernando Rosado Spilki (FR)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.
Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil.

Daniela Tonini da Rocha (DT)

Centro de Diagnóstico E Pesquisa Em Patologia Aviária (CDPA), Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil.

Matheus Nunes Weber (MN)

Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil. matheusweber@feevale.br.
Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil. matheusweber@feevale.br.

Classifications MeSH