Cross-ancestry genetic architecture and prediction for cholesterol traits.


Journal

Human genetics
ISSN: 1432-1203
Titre abrégé: Hum Genet
Pays: Germany
ID NLM: 7613873

Informations de publication

Date de publication:
27 Mar 2024
Historique:
received: 30 06 2023
accepted: 13 02 2024
medline: 27 3 2024
pubmed: 27 3 2024
entrez: 27 3 2024
Statut: aheadofprint

Résumé

While cholesterol is essential, a high level of cholesterol is associated with the risk of cardiovascular diseases. Genome-wide association studies (GWASs) have proven successful in identifying genetic variants that are linked to cholesterol levels, predominantly in white European populations. However, the extent to which genetic effects on cholesterol vary across different ancestries remains largely unexplored. Here, we estimate cross-ancestry genetic correlation to address questions on how genetic effects are shared across ancestries. We find significant genetic heterogeneity between ancestries for cholesterol traits. Furthermore, we demonstrate that single nucleotide polymorphisms (SNPs) with concordant effects across ancestries for cholesterol are more frequently found in regulatory regions compared to other genomic regions. Indeed, the positive genetic covariance between ancestries is mostly driven by the effects of the concordant SNPs, whereas the genetic heterogeneity is attributed to the discordant SNPs. We also show that the predictive ability of the concordant SNPs is significantly higher than the discordant SNPs in the cross-ancestry polygenic prediction. The list of concordant SNPs for cholesterol is available in GWAS Catalog. These findings have relevance for the understanding of shared genetic architecture across ancestries, contributing to the development of clinical strategies for polygenic prediction of cholesterol in cross-ancestral settings.

Identifiants

pubmed: 38536467
doi: 10.1007/s00439-024-02660-7
pii: 10.1007/s00439-024-02660-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Australian Research Council
ID : DP190100766

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Amariuta T, Ishigaki K, Sugishita H, Ohta T, Koido M, Dey KK, Matsuda K, Murakami Y, Price AL, Kawakami E (2020) Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat Genet 52:1346–1354
pubmed: 33257898 pmcid: 8049522 doi: 10.1038/s41588-020-00740-8
Amin N, Van Duijn CM, Aulchenko YS (2007) A genomic background based method for association analysis in related individuals. PLoS One 2:e1274
pubmed: 18060068 pmcid: 2093991 doi: 10.1371/journal.pone.0001274
Andaleon A, Mogil LS, Wheeler HE (2018) Gene-based association study for lipid traits in diverse cohorts implicates BACE1 and SIDT2 regulation in triglyceride levels. PearJ 6:e4314
Benyamin B, He J, Zhao Q, Gratten J, Garton F, Leo PJ, Liu Z, Mangelsdorf M, Al-Chalabi A, Anderson L (2017) Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat Commun 8:611
pubmed: 28931804 pmcid: 5606989 doi: 10.1038/s41467-017-00471-1
Border R, Smolen A, Corley RP, Stallings MC, Brown SA, Conger RD, Derringer J, Donnellan MB, Haberstick BC, Hewitt JK (2019) Imputation of behavioral candidate gene repeat variants in 486,551 publicly-available UK Biobank individuals. Eur J Hum Genet 27:963–969
pubmed: 30723318 pmcid: 6777532 doi: 10.1038/s41431-019-0349-x
Brown BC, Ye CJ, Price AL, Zaitlen N, Consortium AGENTD (2016) Transethnic genetic-correlation estimates from summary statistics. Am J Human Genetics 99:76–88
doi: 10.1016/j.ajhg.2016.05.001
Bulik-Sullivan B, Finucane H, Anttila V, Gusev A, Day F, Loh P, Consortium SWGotPG (2015a) ReproGen consortium psychiatric genomics consortium genetic consortium for anorexia nervosa of the wellcome trust case control consortium 3 an atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL, Neale BM, Consortium SWGotPG (2015b) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Bustamante CD, Burchard EG (2011) De la Vega FM. Genomics for the world. Nature 475:163–165
pubmed: 21753830 pmcid: 3708540 doi: 10.1038/475163a
Cao C (2020) Analysis of Concordance and Discordance in Genetic Association Studies via Forward-Backward Scoring Scheme, Masters Thesis, The Ohio State University
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92
pubmed: 22728672 pmcid: 3679285 doi: 10.4161/fly.19695
Craig M, Yarrarapu SNS, Dimri M (2018) In StatPearls; StatPearls Publishing: Treasure Island, FL, USA
Ding K, Kullo IJ (2009) Evolutionary genetics of coronary heart disease. Circulation 119:459–467
pubmed: 19171868 doi: 10.1161/CIRCULATIONAHA.108.809970
Ding X, Zhang W, Li S, Yang H (2019) The role of cholesterol metabolism in cancer. Am J Cancer Res 9:219
pubmed: 30906624 pmcid: 6405981
Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, Peterson R, Domingue B (2019) Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun 10:328. https://doi.org/10.1038/s41467-019-11112-0
doi: 10.1038/s41467-019-11112-0
Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE (2017) Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol 186:1026–1034
pubmed: 28641372 pmcid: 5860371 doi: 10.1093/aje/kwx246
Galinsky KJ, Reshef YA, Finucane HK, Loh PR, Zaitlen N, Patterson NJ, Brown BC, Price AL (2019) Estimating cross-population genetic correlations of causal effect sizes. Genet Epidemiol 43:180–188
pubmed: 30474154 doi: 10.1002/gepi.22173
Gilbert W (1985) Genes-in-pieces revisited. Science 228:823–825
pubmed: 4001923 doi: 10.1126/science.4001923
Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245
pubmed: 23239837
Graham SE, Clarke SL, Wu K-HH, Kanoni S, Zajac GJ, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600:675–679
pubmed: 34887591 pmcid: 8730582 doi: 10.1038/s41586-021-04064-3
Guo H, Li JJ, Lu Q, Hou L (2021) Detecting local genetic correlations with scan statistics. Nat Commun 12:2033
pubmed: 33795679 pmcid: 8016883 doi: 10.1038/s41467-021-22334-6
Gusev A, Lee SH, Trynka G, Finucane H, Vilhjálmsson BJ, Xu H, Zang C, Ripke S, Bulik-Sullivan B, Stahl E (2014) Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet 95:535–552
pubmed: 25439723 pmcid: 4225595 doi: 10.1016/j.ajhg.2014.10.004
Huang QQ, Sallah N, Dunca D, Trivedi B, Hunt KA, Hodgson S, Lambert SA, Arciero E, Wright J, Griffiths C (2022) Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals. Nat Commun 13(1):4664
pubmed: 35945198 pmcid: 9363492 doi: 10.1038/s41467-022-32095-5
Iliadou A, Snieder H, Wang X, Treiber FA, Davis CL (2005) Heritabilities of lipids in young European American and African American twins. Twin Res Hum Genet 8:492–498
pubmed: 16212838 doi: 10.1375/twin.8.5.492
Jin J, Cerise JE, Kang SJ, Yoon EJ, Yoon S, Mendell NR, Finch SJ (2011) Principal components ancestry adjustment for Genetic Analysis Workshop 17 data BMC proceedings. Suppl 9(Suppl 9):S66. https://doi.org/10.1186/1753-6561-5-S9-S66
doi: 10.1186/1753-6561-5-S9-S66
Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso G (2018) Genetics of blood lipids among~ 300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50:1514–1523
pubmed: 30275531 pmcid: 6521726 doi: 10.1038/s41588-018-0222-9
Kuchenbaecker K, Telkar N, Reiker T, Walters RG, Lin K, Eriksson A, Gurdasani D, Gilly A, Southam L, Tsafantakis E (2019) The transferability of lipid loci across African, Asian and European cohorts. Nat Commun 10(1):4330
pubmed: 31551420 pmcid: 6760173 doi: 10.1038/s41467-019-12026-7
Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, Gaspar H, Ikeda M, Benyamin B, Brown BC (2019) Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet 51:1670–1678
pubmed: 31740837 pmcid: 6885121 doi: 10.1038/s41588-019-0512-x
Lee SH, Van der Werf JH (2016) MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics 32:1420–1422
pubmed: 26755623 pmcid: 4848406 doi: 10.1093/bioinformatics/btw012
Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR (2012) Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28:2540–2542
pubmed: 22843982 pmcid: 3463125 doi: 10.1093/bioinformatics/bts474
Lee SH, Weerasinghe WSP, Van Der Werf JH (2017) Genotype-environment interaction on human cognitive function conditioned on the status of breastfeeding and maternal smoking around birth. Sci Rep 7(1):6087
pubmed: 28729621 pmcid: 5519601 doi: 10.1038/s41598-017-06214-y
Lewis CM, Vassos E (2020) Polygenic risk scores: from research tools to clinical instruments. Genomic Medicine 12(1):44
Liu X, White S, Peng B, Johnson AD, Brody JA, Li AH, Huang Z, Carroll A, Wei P, Gibbs R (2016) WGSA: an annotation pipeline for human genome sequencing studies. J Med Genet 53:111–112
pubmed: 26395054 doi: 10.1136/jmedgenet-2015-103423
Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC (2017) Exome-wide association study of plasma lipids in> 300,000 individuals. Nat Genet 49:1758–1766
pubmed: 29083408 pmcid: 5709146 doi: 10.1038/ng.3977
Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, Schoenherr S, Forer L, McCarthy S, Abecasis GR (2016) Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 48:1443
pubmed: 27694958 pmcid: 5096458 doi: 10.1038/ng.3679
Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, Da Y (2010) Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMJ Med Genet 11:55
doi: 10.1186/1471-2350-11-55
Marigorta UM, Navarro A (2013) High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet 9:e1003566
pubmed: 23785302 pmcid: 3681663 doi: 10.1371/journal.pgen.1003566
Márquez-Luna C, Loh PR, Consortium SATD, Consortium STD, Price AL (2017) Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet Epidemiol 41:811–823
pubmed: 29110330 pmcid: 5726434 doi: 10.1002/gepi.22083
Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, Kenny EE (2017) Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet 100:635–649
pubmed: 28366442 pmcid: 5384097 doi: 10.1016/j.ajhg.2017.03.004
Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51:584–591
pubmed: 30926966 pmcid: 6563838 doi: 10.1038/s41588-019-0379-x
McClellan J, King M-C (2010) Genetic heterogeneity in human disease. Cell 141:210–217
pubmed: 20403315 doi: 10.1016/j.cell.2010.03.032
Meuleman W, Muratov A, Rynes E, Halow J, Lee K, Bates D, Diegel M, Dunn D, Neri F, Teodosiadis A (2020) Index and biological spectrum of human DNase I hypersensitive sites. Nature 584:244–251
pubmed: 32728217 pmcid: 7422677 doi: 10.1038/s41586-020-2559-3
Miao J, Guo H, Song G, Zhao Z, Hou L, Lu Q (2023) Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat Commun 14:832
pubmed: 36788230 pmcid: 9929290 doi: 10.1038/s41467-023-36544-7
Momin MM, Lee S, Wray NR, Lee SH (2023a) Significance tests for R2 of out-of-sample prediction using polygenic scores. Am J Hum Genet 110:349–358. https://doi.org/10.1016/j.ajhg.2023.01.004
doi: 10.1016/j.ajhg.2023.01.004 pubmed: 36702127 pmcid: 9943721
Momin MM, Shin J, Lee S, Truong B, Benyamin B, Lee SH (2023b) A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data. Nat Commun 14(1):732. https://doi.org/10.1038/s41467-023-36281-x
doi: 10.1038/s41467-023-36281-x
Morris AP (2011) Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 35:809–822
pubmed: 22125221 pmcid: 3460225 doi: 10.1002/gepi.20630
Motazacker MM, Peter J, Treskes M, Shoulders CC, Kuivenhoven JA, Hovingh GK (2013) Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels. Arterioscler Thromb Vasc Biol 33:1521–1528
pubmed: 23685560 doi: 10.1161/ATVBAHA.113.301505
Musunuru K, Kathiresan S (2019) Genetics of common, complex coronary artery disease. Cell 177:132–145
pubmed: 30901535 doi: 10.1016/j.cell.2019.02.015
Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40:195–211
pubmed: 23402469 doi: 10.1016/j.pop.2012.11.003
Neshat M, Lee S, Momin MM, Truong B, van der Werf JHJ, Lee SH (2022) An effective hyper-parameter can increase the prediction accuracy in a single-step genetic evaluation. Front Genet 14:1104906. https://doi.org/10.3389/fgene.2023.1104906 .
doi: 10.3389/fgene.2023.1104906
Ni G, Moser G, Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B (2018) Estimation of genetic correlation via linkage disequilibrium score regression and genomic restricted maximum likelihood. Am J Hum Genet 102:1185–1194
pubmed: 29754766 pmcid: 5993419 doi: 10.1016/j.ajhg.2018.03.021
Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646–649
pubmed: 18425127 pmcid: 3989108 doi: 10.1038/ng.139
Oh SS, White MJ, Gignoux CR, Burchard EG (2016) Making precision medicine socially precise. Take a deep breath. Am J Respir Crit Care Med 193(4):348–350
pubmed: 26871667 pmcid: 4803087 doi: 10.1164/rccm.201510-2045ED
Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381
pubmed: 24390342 doi: 10.1038/nature12873
Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, Turley P, Chen G-B, Emilsson V, Meddens SFW (2016) Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533:539–542
pubmed: 27225129 pmcid: 4883595 doi: 10.1038/nature17671
Ollier W, Sprosen T, Peakman T (2005) UK Biobank: from concept to reality. Future Med 6(6):639–646
Peterson RE, Kuchenbaecker K, Walters RK, Chen C-Y, Popejoy AB, Periyasamy S, Lam M, Iyegbe C, Strawbridge RJ, Brick L (2019) Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179:589–603
pubmed: 31607513 pmcid: 6939869 doi: 10.1016/j.cell.2019.08.051
Peyrot WJ, Van der Auwera S, Milaneschi Y, Dolan CV, Madden PA, Sullivan PF, Strohmaier J, Ripke S, Rietschel M, Nivard MG (2018) Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5765 subjects from the psychiatric genomics consortium. Biol Psychiat 84:138–147
pubmed: 29129318 doi: 10.1016/j.biopsych.2017.09.009
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M (2010) Genome-wide association studies in diverse populations. Nat Rev Genet 11:356–366
pubmed: 20395969 pmcid: 3079573 doi: 10.1038/nrg2760
Shi H, Gazal S, Kanai M, Koch EM, Schoech AP, Siewert KM, Kim SS, Luo Y, Amariuta T, Huang H (2021) Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat Commun 12(1):1098
pubmed: 33597505 pmcid: 7889654 doi: 10.1038/s41467-021-21286-1
Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91:1011–1021
pubmed: 23217325 pmcid: 3516604 doi: 10.1016/j.ajhg.2012.10.010
Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ (2017) Reevaluation of SNP heritability in complex human traits. Nat Genet 49:986–992
pubmed: 28530675 pmcid: 5493198 doi: 10.1038/ng.3865
Speed D, Holmes J, Balding DJ (2020) Evaluating and improving heritability models using summary statistics. Nat Genet 52:458–462
pubmed: 32203469 doi: 10.1038/s41588-020-0600-y
Takeuchi F, Akiyama M, Matoba N, Katsuya T, Nakatochi M, Tabara Y, Narita A, Saw W-Y, Moon S, Spracklen CN (2018) Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat Commun 9:5052
pubmed: 30487518 pmcid: 6261994 doi: 10.1038/s41467-018-07345-0
Tall AR, Thomas DG, Gonzalez-Cabodevilla AG, Goldberg I (2022) Addressing dyslipidemic risk beyond LDL-cholesterol. J Clin Investig. https://doi.org/10.1172/JCI148559
doi: 10.1172/JCI148559 pubmed: 35587375 pmcid: 9246386
Trinder M, Francis GA, Brunham LR (2020a) Association of monogenic vs polygenic hypercholesterolemia with risk of atherosclerotic cardiovascular disease. JAMA Cardiol 5:390–399
pubmed: 32049305 pmcid: 7042820 doi: 10.1001/jamacardio.2019.5954
Trinder M, Paquette M, Cermakova L, Ban MR, Hegele RA, Baass A, Brunham LR (2020b) Polygenic contribution to low-density lipoprotein cholesterol levels and cardiovascular risk in monogenic familial hypercholesterolemia. Circulation 13:515–523
pubmed: 33079599
Tropf FC, Lee SH, Verweij RM, Stulp G, Van Der Most PJ, De Vlaming R, Bakshi A, Briley DA, Rahal C, Hellpap R (2017) Hidden heritability due to heterogeneity across seven populations. Nat Hum Behav 1:757–765
pubmed: 29051922 pmcid: 5642946 doi: 10.1038/s41562-017-0195-1
VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423
pubmed: 18946147 doi: 10.3168/jds.2007-0980
Verbeek R, Hoogeveen RM, Langsted A, Stiekema LC, Verweij SL, Hovingh GK, Wareham NJ, Khaw K-T, Boekholdt SM, Nordestgaard BG (2018) Cardiovascular disease risk associated with elevated lipoprotein (a) attenuates at low low-density lipoprotein cholesterol levels in a primary prevention setting. Eur Heart J 39:2589–2596
pubmed: 29931232 doi: 10.1093/eurheartj/ehy334
Veturi Y, de Los CG, Yi N, Huang W, Vazquez AI, Kühnel B (2019) Modeling heterogeneity in the genetic architecture of ethnically diverse groups using random effect interaction models. Genetics 211:1395–1407
pubmed: 30796011 pmcid: 6456318 doi: 10.1534/genetics.119.301909
Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, Genovese G, Loh P-R, Bhatia G, Do R (2015) Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet 97:576–592
pubmed: 26430803 pmcid: 4596916 doi: 10.1016/j.ajhg.2015.09.001
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164–e164
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Weiss LA, Pan L, Abney M, Ober C (2006) The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 38:218–222
pubmed: 16429159 doi: 10.1038/ng1726
WHO (2021) World Health Organization; Cardiovascular diseases (CVDs)
Yadav ML, Mohapatra B (2018) Intergenic. In: Vonk J, Shackelford T (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_64-1
Yan S, Qu X, Xu L, Che X, Ma Y, Zhang L, Teng Y, Zou H, Liu Y (2014) Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anticancer Drugs 25:683–689
pubmed: 24710190 doi: 10.1097/CAD.0000000000000095
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569
pubmed: 20562875 pmcid: 3232052 doi: 10.1038/ng.608
Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Zhou X, Im HK, Lee SH (2020) CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses. Nat Commun 11:4208
pubmed: 32826890 pmcid: 7442840 doi: 10.1038/s41467-020-18085-5

Auteurs

Md Moksedul Momin (MM)

Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia. Cvasu.Momin@gmail.com.
UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia. Cvasu.Momin@gmail.com.
Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, Chattogram, 4225, Bangladesh. Cvasu.Momin@gmail.com.
South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia. Cvasu.Momin@gmail.com.

Xuan Zhou (X)

Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia.

Elina Hyppönen (E)

Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia.
UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.

Beben Benyamin (B)

Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia.

S Hong Lee (SH)

Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia. Hong.Lee@unisa.edu.au.
UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia. Hong.Lee@unisa.edu.au.
South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia. Hong.Lee@unisa.edu.au.

Classifications MeSH