Genome constitution and evolution of Elymus atratus (Poaceae: Triticeae) inferred from cytogenetic and phylogenetic analysis.
Acc1
Campeiostachys
DMC1
matK
In situ hybridization
Taxonomy
Journal
Genes & genomics
ISSN: 2092-9293
Titre abrégé: Genes Genomics
Pays: Korea (South)
ID NLM: 101481027
Informations de publication
Date de publication:
27 Mar 2024
27 Mar 2024
Historique:
received:
27
06
2023
accepted:
21
01
2024
medline:
27
3
2024
pubmed:
27
3
2024
entrez:
27
3
2024
Statut:
aheadofprint
Résumé
Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. To identify the genome constitution and origin of E. atratus. In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.
Sections du résumé
BACKGROUND
BACKGROUND
Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet.
OBJECTIVE
OBJECTIVE
To identify the genome constitution and origin of E. atratus.
METHODS
METHODS
In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed.
RESULTS
RESULTS
Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome.
CONCLUSION
CONCLUSIONS
Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.
Identifiants
pubmed: 38536618
doi: 10.1007/s13258-024-01496-9
pii: 10.1007/s13258-024-01496-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 32270388
Organisme : National Natural Science Foundation of China
ID : 32200180
Organisme : Science and Technology Bureau of Sichuan Province
ID : 23NSFSC1995
Informations de copyright
© 2024. The Author(s) under exclusive licence to The Genetics Society of Korea.
Références
Adderley S, Sun GL (2014) Molecular evolution and nucleotide diversity of nuclear plastid phosphoglycerate kinase (PGK) gene in Triticeae (Poaceae). Gene 533:142–148
pubmed: 24120623
doi: 10.1016/j.gene.2013.09.103
Assadi M, Runemark H (1995) Hybridisation, genomic constitution and generic delimitation in Elymus s. l. (Poaceae: Triticeae). Plant Syst Evol 194:189–205
doi: 10.1007/BF00982855
Barkworth ME, Jacobs SWL (2009) Connorochloa: a new genus in Triticeae. Breed Sci 59:685–686
doi: 10.1270/jsbbs.59.685
Baum BR, Yang JL, Yen C (1995) Taxonomic separation of Kengyilia (Poaceae: Triticeae) in relation to nearest related Roegneria, Elymus, and Agropyron, based on some morphological characters. Plant Syst Evol 194:123–132
doi: 10.1007/BF00982851
Baum BR, Yang JL, Yen C, Agafonov AV (2011) A taxonomic synopsis of the genus Campeiostachys Drobov. J Syst Evol 49:146–159
doi: 10.1111/j.1759-6831.2010.00106.x
Cai LB (1997) A taxonomical study on the genus Roegneria C. Koch from China. Acta Phytotax Sin 35:148–177
Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement: 16th Stadler genetics symposium. Springer US, Boston, pp 209–279
doi: 10.1007/978-1-4613-2429-4_9
Dong ZZ, Fan X, Sha LN, Wang Y, Zeng J, Kang HY, Zhang HQ, Wang XL, Zhang L, Ding CB (2015) Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC Plant Biol 15:179
pubmed: 26164196
pmcid: 4499217
doi: 10.1186/s12870-015-0517-2
Dou QW, Zhang TL, Tsujimoto H (2011) Physical mapping of repetitive sequences and genome analysis in six Elymus species by in situ hybridization. J Syst Evol 49:347–352
doi: 10.1111/j.1759-6831.2011.00138.x
Doyle JJT, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
Gao G, Gou XM, Wang Q, Zhang Y, Deng JB, Ding CB, Zhang L, Zhou YH, Yang RW (2014) Phylogenetic relationships and Y genome origin in Chinese Elymus (Triticeae: Poaceae) based on single copy gene DMC1. Biochem Syst Ecol 57:420–426
doi: 10.1016/j.bse.2014.09.019
Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137
pubmed: 19378142
doi: 10.1007/978-1-59745-251-9_6
Han FP, Gao Z, Birchler JA (2009) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in Maize. Plant Cell 21:1929–1939
pubmed: 19602622
pmcid: 2729603
doi: 10.1105/tpc.109.066662
Heslop-Harrison JS (1992) Molecular cytogenetics, cytology and genomic comparisons in the Triticeae. Hereditas 116:93–99
doi: 10.1111/j.1601-5223.1992.tb00805.x
Huang SX, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci 99:8133–8138
pubmed: 12060759
pmcid: 123033
doi: 10.1073/pnas.072223799
Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755
pubmed: 11524383
doi: 10.1093/bioinformatics/17.8.754
Jensen KB (1990) Cytology, fertility, and morphology of Elymus kengii (Keng) Tzvelev and E. grandiglumis (Keng) A. Lve (Triticeae: Poaceae). Genome 33:563–570
doi: 10.1139/g90-083
Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae (Gramineae). Syst Bot 21:321–347
doi: 10.2307/2419662
Kimber G, Alonso LC (1981) The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can J Genet Cytol 23:235–254
doi: 10.1139/g81-026
Kuo PC (1987) Flora republicae popularis sinicae. Science Press, Beijing
Lei YX, Fan X, Sha LN, Wang Y, Kang HY, Zhou YH, Zhang HQ (2016) Phylogenetic relationships and the maternal donor of Roegneria (Triticeae: Poaceae) based on three nuclear DNA sequences (ITS, Acc1, and Pgk1) and one chloroplast region (trnL-F). J Syst Evol 65:185–191
Lei YX, Liu J, Fan X, Sha LN, Wang Y, Kang HY, Zhou YH, Zhang HQ (2018) Phylogeny and maternal donor of Roegneria and its affinitive genera (Poaceae: Triticeae) based on sequence data for two chloroplast DNA regions (ndhF and trnH–psbA). J Syst Evol 56:105–119
doi: 10.1111/jse.12291
Lei YX, Fan X, Sha LN, Wang Y, Kang HY, Zhou YH, Zhang HQ (2022) Phylogenetic relationships and the maternal donor of Roegneria (Triticeae: Poaceae) based on three nuclear DNA sequences (ITS, Acc1, and Pgk1) and one chloroplast region (trnL-F). J Syst Evol 60:305–318
doi: 10.1111/jse.12664
Li CB, Zhang DM, Ge S, Lu BR, Hong DY (2001) Identification of genome constitution of Oryza malampuzhaensis, O. minuta, and O. punctata by multicolor genomic in situ hybridization. Theor Appl Genet 103:204–211
doi: 10.1007/s001220100563
Liu YH (1985) Studies on the karyotypes of 11 species of Elymus from China. Plant Sci J 3:325–330
Liu QL, Ge S, Tang HB, Zhang XL, Zhu GF, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol 170:411–420
pubmed: 16608465
doi: 10.1111/j.1469-8137.2006.01665.x
Liu QL, Liu L, Ge S, Fu LP, Bai SQ, Lv X, Wang QK, Chen W, Wang FY, Wang LH et al (2022) Endo-allopolyploidy of autopolyploids and recurrent hybridization—A possible mechanism to explain the unresolved Y-genome donor in polyploid Elymus species (Triticeae: Poaceae). J Syst Evol 60:344–360
doi: 10.1111/jse.12659
Löve Á (1984) Conspectus of the Triticeae. Feddes Repertorium 95:425–521
Lu BR (1993) Meiotic studies of Elymus nutans and E. jacquemontii (Poaceae, Triticeae) and their hybrids with Pseudoroegneria spicata and seventeen Elymus species. Plant Syst Evol 186:193–212
doi: 10.1007/BF00940798
Lu BR, Yan J, Yang JL (1990) Cytological observations on Triticeae materials from Xinjiang. Acta Bot Yunnan 12:57–66
Lucía V, Enrique R, Anamthawat-Jónsson K, Martínez-Ortega MM (2019) Cytogenetic evidence for a new genus of Triticeae (Poaceae) endemic to the Iberian Peninsula: description and comparison with related genera. Bot J Linn Soc 4:523–546
doi: 10.1093/botlinnean/boz068
Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of north American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45:991–1002
pubmed: 12502243
doi: 10.1139/g02-065
Mason-Gamer RJ, Burns MM, Naum M (2005) Polyploidy, introgression, and complex phylogenetic patterns within Elymus. Czech J Genet Plant Breed 41:21–26
doi: 10.17221/6127-CJGPB
Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9:e85761
pubmed: 24614886
pmcid: 3948623
doi: 10.1371/journal.pone.0085761
Nasernakhaei F, Rahiminejad MR, Saeidi H, Tavassoli M (2015) Phylogenetic relationships among the Iranian Triticum diploid gene pool as inferred from the loci Acc1 and Pgk1. Phytotaxa 201:111–121
doi: 10.11646/phytotaxa.201.2.1
Okito P, Mott IW, Wu YJ, Wang RC (2009) A Y genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome 52:391–400
pubmed: 19370094
doi: 10.1139/G09-015
Ørgaard M, Heslop-Harrison JS (1994) Investigation of genome relationships between Leymus psathyrostachys and Hordeum inferred from genomic DNA: DNA in situ hybridization. Ann Botany 73:195–203
doi: 10.1006/anbo.1994.1023
Petersen G, Seberg O (2002) Molecular evolution and phylogenetic application of DMC1. Mol Phylogenet Evol 22:43–50
pubmed: 11796028
doi: 10.1006/mpev.2001.1011
Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82
pubmed: 16504543
doi: 10.1016/j.ympev.2006.01.023
Petersen G, Seberg O, Salomon B (2011) The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. (Poaceae: Triticeae). Plant Syst Evol 291:197–210
doi: 10.1007/s00606-010-0381-3
Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818
pubmed: 9918953
doi: 10.1093/bioinformatics/14.9.817
Rauscher JT, Doyle JJ, Brown AH (2004) Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166:987–998
pubmed: 15020482
pmcid: 1470747
doi: 10.1093/genetics/166.2.987
Sakamoto S, Muramatsu M (1966) Cytogenetic studies in the tribe Triticeae. II. Tetraploid and hexaploid hybrids of Agropyron. Japanese J Genet 41:155–168
doi: 10.1266/jjg.41.155
Sears ER (1954) The aneuploids of common wheat. In, pp 1–59
Sha LN, Fan X, Yang RW, Kang HY, Ding CB, Zhang L, Zheng YL, Zhou YH (2010) Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Acc1, DMC1 and chloroplast trnL-F sequences. Mol Phylogenet Evol 54:327–335
pubmed: 19435606
doi: 10.1016/j.ympev.2009.05.005
Sha LN, Fan X, Wang XL, Dong ZZ, Zeng J, Zhang HQ, Kang HY, Wang Y, Liao JQ, Zhou YH (2017) Genome origin, historical hybridization and genetic differentiation in Anthosachne australasica (Triticeae; Poaceae), inferred from chloroplast rbc L, trn H- psb A and nuclear Acc1 gene sequences. Ann Botany 119:95–107
doi: 10.1093/aob/mcw222
Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191
doi: 10.1046/j.1469-8137.2003.00948.x
Sun G, Komatsuda T (2010) Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Mol Phylogenet Evol 56:727–733
pubmed: 20363342
doi: 10.1016/j.ympev.2010.03.037
Sun G, Ni Y, Daley T (2008) Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol Phylogenet Evol 46:897–907
pubmed: 18262439
doi: 10.1016/j.ympev.2007.12.024
Tan L, Zhang HQ, Chen WH, Deng MQ, Zhou YH (2021) Genome composition and taxonomic revision of Elymus purpuraristatus and Roegneria calcicola (Poaceae: Triticeae) based on cytogenetic and phylogenetic analyses. Bot J Linn Soc 196:245–255
doi: 10.1093/botlinnean/boaa103
Tan L, Huang QX, Song Y, Wu DD, Cheng YR, Zhang CB, Sha LN, Fan X, Kang HY, Wang Y et al (2022) Biosystematics studies on Elymus breviaristatus and Elymus sinosubmuticus (Poaceae: Triticeae). BMC Plant Biol 22:57
pubmed: 35105308
pmcid: 8805286
doi: 10.1186/s12870-022-03441-y
Tang C, Qi J, Chen N, Sha LN, Wang Y, Zeng J, Kang HY, Zhang HQ, Zhou YH, Fan X (2017) Genome origin and phylogenetic relationships of Elymus villosus (Triticeae: Poaceae) based on single-copy nuclear Acc1, Pgk1, DMC1 and chloroplast trnL-F sequences. Biochem Syst Ecol 70:168–176
doi: 10.1016/j.bse.2016.11.011
Torabinejad J, Mueller RJ (1993) Genome analysis of intergeneric hybrids of apomictic and sexual Australian Elymus species with wheat, barley and rye: implication for the transfer of apomixis to cereals. Theor Appl Genet 86:288–294
pubmed: 24193471
doi: 10.1007/BF00222090
Wang L, Shi QH, Su HD, Wang Y, Sha LN, Fan X, Kang HY, Zhang HQ, Zhou YH (2017) St2-80 - a new FISH marker for St genome and genome analysis in Triticeae. Genome 60:553–563
pubmed: 28314114
doi: 10.1139/gen-2016-0228
Wang L, Jiang YY, Shi QH, Wang Y, Sha LN, Fan X, Kang HY, Zhang HQ, Sun GL, Zhang L et al (2019) Genome constitution and evolution of Elytrigia lolioides inferred from Acc1, EF-G, ITS, TrnL-F sequences and GISH. BMC Plant Biol 19:158
pubmed: 31023230
pmcid: 6485066
doi: 10.1186/s12870-019-1779-x
Yan C, Hu Q, Sun G (2014) Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history of Elymus pendulinus. Genome 57:97–109
pubmed: 24702067
doi: 10.1139/gen-2014-0002
Yang CR, Zhang HQ, Zhao FQ, Liu XY, Fan X, Sha LN, Kang HY, Wang Y, Zhou YH (2015) Genome constitution of Elymus tangutorum (Poaceae: Triticeae)inferred from meiotic pairing behavior and genomic in situ hybridization. J Syst Evol 53:529–534
doi: 10.1111/jse.12155
Yang C-R, Baum B-R, Chen W-H, Zhang H-Q, Liu X-Y, Fan X, Sha L-N, Kang H-Y, Wang Y, Zhou Y-H (2016) Genomic constitution and taxonomy of the Chinese hexaploids Elymus cylindricus and E. breviaristatus (Poaceae: Triticeae). Bot J Linn Soc 182:650–657
doi: 10.1111/boj.12469
Yen C, Yang JL (1990) Kengyilia gobicola, a new taxon from West China. Can J Bot 68:1894–1897
doi: 10.1139/b90-248
Yen C, Yang JL, Baum BR (2005) Douglasdeweya: a new genus, with a new species and a new combination (Triticeae: Poaceae). Can J Bot 83:413–419
doi: 10.1139/b05-018
Yen C, Yang JL, Baum BR (2006) Biosystematics of Triticeae: volume I. China Agricultural Press, Beijing
Yen C, Yang JL, Baum BR (2011) Biosystematics of Triticeae: volume III. China Agricultural Press, Beijing
Yen C, Yang JL, Baum BR (2013) Biosystematics of Triticeae: volume V. China Agricultural Press, Beijing
Yu HQ, Zhang C, Ding CB, Zhang HQ, Zhou YH (2010) Genome constitutions of Roegneria alashanica, R. elytrigioides, R. magnicaespes and R. grandis (Poaceae: Triticeae) via genomic in-situ hybridization. Nord J Bot 28:1–6
doi: 10.1111/j.1756-1051.2009.00611.x
Zhang HQ, Zhou YH (2007) Meiotic analysis of the interspecific and intergeneric hybrids between Hystrix patula Moench and H. Duthiei ssp. longearistata, Pseudoroegneria, Elymus, Roegneria, and Psathyrostachys species (Poaceae, Triticeae). Bot J Linn Soc 153:213–219
doi: 10.1111/j.1095-8339.2006.00600.x
Zhang HQ, Yang RW, Dou QW, Tsujimoto H, Zhou YH (2006) Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Res 14:595–604
pubmed: 16964566
doi: 10.1007/s10577-006-1057-2