Nano- and microplastic PBK modeling in the context of human exposure and risk assessment.
Human exposure
Microplastics
Nanoplastics
PBK modeling
Risk
Journal
Environment international
ISSN: 1873-6750
Titre abrégé: Environ Int
Pays: Netherlands
ID NLM: 7807270
Informations de publication
Date de publication:
16 Feb 2024
16 Feb 2024
Historique:
received:
15
11
2023
revised:
30
01
2024
accepted:
14
02
2024
medline:
28
3
2024
pubmed:
28
3
2024
entrez:
27
3
2024
Statut:
aheadofprint
Résumé
Insufficient data on nano- and microplastics (NMP) hinder robust evaluation of their potential health risks. Methodological disparities and the absence of established toxicity thresholds impede the comparability and practical application of research findings. The diverse attributes of NMP, such as variations in sizes, shapes, and compositions, complicate human health risk assessment. Although probability density functions (PDFs) show promise in capturing this diversity, their integration into risk assessment frameworks is limited. Physiologically based kinetic (PBK) models offer a potential solution to bridge the gap between external exposure and internal dosimetry for risk evaluation. However, the heterogeneity of NMP poses challenges for accurate biodistribution modeling. A literature review, encompassing both experimental and modeling studies, was conducted to examine biodistribution studies of monodisperse micro- and nanoparticles. The literature search in PubMed and Scopus databases yielded 39 studies that met the inclusion criteria. Evaluation criteria were adapted from previous Quality Assurance and Quality Control (QA-QC) studies, best practice guidelines from WHO (2010), OECD guidance (2021), and additional criteria specific to NMP risk assessment. Subsequently, a conceptual framework for a comprehensive NMP-PBK model was developed, addressing the multidimensionality of NMP particles. Parameters for an NMP-PBK model are presented. QA-QC evaluations revealed that most experimental studies scored relatively well (>0) in particle characterizations and environmental settings but fell short in criteria application for biodistribution modeling. The evaluation of modeling studies revealed that information regarding the model type and allometric scaling requires improvement. Three potential applications of PDFs in PBK modeling of NMP are identified: capturing the multidimensionality of the NMP continuum, quantifying the probabilistic definition of external exposure, and calculating the bio-accessibility fraction of NMP in the human body. A framework for an NMP-PBK model is proposed, integrating PDFs to enhance the assessment of NMP's impact on human health.
Identifiants
pubmed: 38537584
pii: S0160-4120(24)00090-4
doi: 10.1016/j.envint.2024.108504
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
108504Informations de copyright
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.