Revealing uncertainty in the status of biodiversity change.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
27 Mar 2024
27 Mar 2024
Historique:
received:
23
11
2022
accepted:
26
02
2024
medline:
28
3
2024
pubmed:
28
3
2024
entrez:
28
3
2024
Statut:
aheadofprint
Résumé
Biodiversity faces unprecedented threats from rapid global change
Identifiants
pubmed: 38538788
doi: 10.1038/s41586-024-07236-z
pii: 10.1038/s41586-024-07236-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
doi: 10.1111/geb.12729
pubmed: 30147447
pmcid: 6099392
Sauer, J. R. et al. The first 50 years of the North American Breeding Bird Survey. Condor 119, 576–593 (2017).
doi: 10.1650/CONDOR-17-83.1
Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).
doi: 10.1038/s41467-020-17171-y
pubmed: 32661354
pmcid: 7359034
Comte, L. et al. RivFishTIME: a global database of fish time-series to study global change ecology in riverine systems. Glob. Ecol. Biogeogr. 30, 38–50 (2021).
doi: 10.1111/geb.13210
Freshwater Fish Counts (UK Government, 2021, accessed 1 May 2023); https://environment.data.gov.uk/dataset/ce2618db-d507-4671-bafe-840b930d2297 .
Johnson, T. F., Cruz, P., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. CaPTrends: a database of large carnivoran population trends from around the world. Glob. Ecol. Biogeogr. 31, 2475–2482 (2022).
Living Planet Index Database (LPI, 2023, accessed 1 May 2023); https://www.livingplanetindex.org/data_portal .
Maureaud, A.A., Palacios-Abrantes, J., Kitchel, Z. et al. FISHGLOB_data: an integrated dataset of fish biodiversity sampled with scientific bottom-trawl surveys. Sci. Data 11, 24 (2024).
Quimbayo, J. P. et al. TimeFISH: Long-term assessment of reef fish assemblages in a transition zone in the Southwestern Atlantic. Ecology 104, e3966 (2023).
doi: 10.1002/ecy.3966
pubmed: 36571283
Jandt, U. et al. More losses than gains during one century of plant biodiversity change in Germany. Nature 611, 512–518 (2022).
doi: 10.1038/s41586-022-05320-w
pubmed: 36261519
Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. BioScience 67, 1026–1028 (2017).
doi: 10.1093/biosci/bix125
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
doi: 10.1126/science.1229931
pubmed: 23329036
Gonzalez, A., Chase, J. M. & O’Connor, M. I. A framework for the detection and attribution of biodiversity change. Philos. Trans. R. Soc. B 378, 20220182 (2023).
doi: 10.1098/rstb.2022.0182
Living Planet Report 2020 - Bending the Curve of Biodiversity Loss (WWF, 2020).
Ledger, S. E. H. et al. Past, present, and future of the Living Planet Index. npj Biodivers. 2, 12 (2023).
doi: 10.1038/s44185-023-00017-3
Geldmann, J., Byaruhanga, A., Gregory, R., Visconti, P. & Xu, H. Prioritize wild species abundance indicators. Science 380, 591–592 (2023).
Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).
doi: 10.1038/s41586-020-2920-6
pubmed: 33208939
Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).
doi: 10.1038/s41559-021-01494-0
pubmed: 34168337
Loreau, M. et al. Do not downplay biodiversity loss. Nature 601, E27–E28 (2022).
doi: 10.1038/s41586-021-04179-7
pubmed: 35082409
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
doi: 10.1126/science.aax9931
pubmed: 32327596
Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).
doi: 10.1111/ele.13242
pubmed: 30874368
Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).
doi: 10.1038/s41467-020-17779-0
pubmed: 32879314
pmcid: 7468135
Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023).
doi: 10.1038/s41586-023-06400-1
pubmed: 37558875
pmcid: 10432276
Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).
doi: 10.1098/rspb.2012.1931
pubmed: 23097514
pmcid: 3574422
Browning, E., Freeman, R., Boughey, K. L., Isaac, N. J. B. & Jones, K. E. Accounting for spatial autocorrelation and environment are important to derive robust bat population trends from citizen science data. Ecol. Indic. 136, 108719 (2022).
doi: 10.1016/j.ecolind.2022.108719
Dinnage, R., Skeels, A. & Cardillo, M. Spatiophylogenetic modelling of extinction risk reveals evolutionary distinctiveness and brief flowering period as threats in a hotspot plant genus. Proc. R. Soc. B 287, 20192817 (2020).
doi: 10.1098/rspb.2019.2817
pubmed: 32370670
pmcid: 7282897
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
doi: 10.1038/s41564-017-0012-7
pubmed: 28894102
Status of Priority Species: Relative Abundance (Department for Environment, Food & Rural Affairs, 2023).
Valdez, J. W. et al. The undetectability of global biodiversity trends using local species richness. Ecography 2023, e06604 (2023).
doi: 10.1111/ecog.06604
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
doi: 10.1126/science.aaw1313
pubmed: 31604313
Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).
doi: 10.1111/ele.13495
pubmed: 32266768
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122–10122 (2015).
doi: 10.1038/ncomms10122
pubmed: 26646209
Capdevila, P., Noviello, N., McRae, L., Freeman, R. & Clements, C. F. Global patterns of resilience decline in vertebrate populations. Ecol. Lett. 25, 240–251 (2022).
doi: 10.1111/ele.13927
pubmed: 34784650
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
doi: 10.1038/461472a
pubmed: 19779433
White, E. R. Minimum time required to detect population trends: the need for long-term monitoring programs. BioScience 69, 40–46 (2019).
doi: 10.1093/biosci/biy144
Boyd, R. J., Powney, G. D. & Pescott, O. L. We need to talk about nonprobability samples. Trends Ecol. Evol. 38, 521–531 (2023).
doi: 10.1016/j.tree.2023.01.001
pubmed: 36775795
Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).
doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
Meng, X.-L. Statistical paradises and paradoxes in big data (I): low of large populations, big data paradox, and the 2016 US presidential election. Ann. Appl. Stat. 12, 685–726 (2018).
doi: 10.1214/18-AOAS1161SF
Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).
doi: 10.1038/s41586-022-04617-0
pubmed: 35444280
Jandt, U. et al. ReSurveyGermany: vegetation-plot time-series over the past hundred years in Germany. Sci. Data 9, 631 (2022).
doi: 10.1038/s41597-022-01688-6
pubmed: 36261458
pmcid: 9581966
OpenTree. Open Tree of Life Synthetic Tree version 13.4 https://doi.org/10.5281/zenodo.3937741 (2019).
Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).
doi: 10.1111/2041-210X.12593
Grafen, A. & Hamilton, W. D. The phylogenetic regression. Philos. Trans. R. Soc. B 326, 119–157 (1989).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
doi: 10.1093/bioinformatics/bty633
pubmed: 30016406
Breeding Bird Survey (BTO, 2020, accessed May 1st 2023); https://doi.org/10.5066/P97WAZE5 .
Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 71, 319–392 (2009).
doi: 10.1111/j.1467-9868.2008.00700.x
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
doi: 10.21105/joss.01686
Arel-Bundock, V., Enevoldsen, N. & Yetman, C. countrycode: an R package to convert country names and country codes. J. Open Source Softw. 3, 848 (2018).
doi: 10.21105/joss.00848
Firke, S. janitor: Simple Tools for Examining and Cleaning Dirty Data https://sfirke.github.io/janitor/authors.html (2024).
Müller K. here: A Simpler Way to Find Your Files Version 1.0.1 https://here.r-lib.org/ (2020)
Richardson, N. et al. arrow: Integration to ‘Apache’ ‘Arrow’ Version 15.0.0 https://github.com/apache/arrow/ (2024).
Wickham H. ggplot2: Elegant Graphics for Data Analysis https://ggplot2.tidyverse.org (Springer, 2016).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
doi: 10.1111/2041-210X.12628