Revealing uncertainty in the status of biodiversity change.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
27 Mar 2024
Historique:
received: 23 11 2022
accepted: 26 02 2024
medline: 28 3 2024
pubmed: 28 3 2024
entrez: 28 3 2024
Statut: aheadofprint

Résumé

Biodiversity faces unprecedented threats from rapid global change

Identifiants

pubmed: 38538788
doi: 10.1038/s41586-024-07236-z
pii: 10.1038/s41586-024-07236-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
doi: 10.1111/geb.12729 pubmed: 30147447 pmcid: 6099392
Sauer, J. R. et al. The first 50 years of the North American Breeding Bird Survey. Condor 119, 576–593 (2017).
doi: 10.1650/CONDOR-17-83.1
Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).
doi: 10.1038/s41467-020-17171-y pubmed: 32661354 pmcid: 7359034
Comte, L. et al. RivFishTIME: a global database of fish time-series to study global change ecology in riverine systems. Glob. Ecol. Biogeogr. 30, 38–50 (2021).
doi: 10.1111/geb.13210
Freshwater Fish Counts (UK Government, 2021, accessed 1 May 2023); https://environment.data.gov.uk/dataset/ce2618db-d507-4671-bafe-840b930d2297 .
Johnson, T. F., Cruz, P., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. CaPTrends: a database of large carnivoran population trends from around the world. Glob. Ecol. Biogeogr. 31, 2475–2482 (2022).
Living Planet Index Database (LPI, 2023, accessed 1 May 2023); https://www.livingplanetindex.org/data_portal .
Maureaud, A.A., Palacios-Abrantes, J., Kitchel, Z. et al. FISHGLOB_data: an integrated dataset of fish biodiversity sampled with scientific bottom-trawl surveys. Sci. Data 11, 24 (2024).
Quimbayo, J. P. et al. TimeFISH: Long-term assessment of reef fish assemblages in a transition zone in the Southwestern Atlantic. Ecology 104, e3966 (2023).
doi: 10.1002/ecy.3966 pubmed: 36571283
Jandt, U. et al. More losses than gains during one century of plant biodiversity change in Germany. Nature 611, 512–518 (2022).
doi: 10.1038/s41586-022-05320-w pubmed: 36261519
Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. BioScience 67, 1026–1028 (2017).
doi: 10.1093/biosci/bix125
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
doi: 10.1126/science.1229931 pubmed: 23329036
Gonzalez, A., Chase, J. M. & O’Connor, M. I. A framework for the detection and attribution of biodiversity change. Philos. Trans. R. Soc. B 378, 20220182 (2023).
doi: 10.1098/rstb.2022.0182
Living Planet Report 2020 - Bending the Curve of Biodiversity Loss (WWF, 2020).
Ledger, S. E. H. et al. Past, present, and future of the Living Planet Index. npj Biodivers. 2, 12 (2023).
doi: 10.1038/s44185-023-00017-3
Geldmann, J., Byaruhanga, A., Gregory, R., Visconti, P. & Xu, H. Prioritize wild species abundance indicators. Science 380, 591–592 (2023).
Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).
doi: 10.1038/s41586-020-2920-6 pubmed: 33208939
Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).
doi: 10.1038/s41559-021-01494-0 pubmed: 34168337
Loreau, M. et al. Do not downplay biodiversity loss. Nature 601, E27–E28 (2022).
doi: 10.1038/s41586-021-04179-7 pubmed: 35082409
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
doi: 10.1126/science.aax9931 pubmed: 32327596
Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).
doi: 10.1111/ele.13242 pubmed: 30874368
Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).
doi: 10.1038/s41467-020-17779-0 pubmed: 32879314 pmcid: 7468135
Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023).
doi: 10.1038/s41586-023-06400-1 pubmed: 37558875 pmcid: 10432276
Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).
doi: 10.1098/rspb.2012.1931 pubmed: 23097514 pmcid: 3574422
Browning, E., Freeman, R., Boughey, K. L., Isaac, N. J. B. & Jones, K. E. Accounting for spatial autocorrelation and environment are important to derive robust bat population trends from citizen science data. Ecol. Indic. 136, 108719 (2022).
doi: 10.1016/j.ecolind.2022.108719
Dinnage, R., Skeels, A. & Cardillo, M. Spatiophylogenetic modelling of extinction risk reveals evolutionary distinctiveness and brief flowering period as threats in a hotspot plant genus. Proc. R. Soc. B 287, 20192817 (2020).
doi: 10.1098/rspb.2019.2817 pubmed: 32370670 pmcid: 7282897
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
doi: 10.1038/s41564-017-0012-7 pubmed: 28894102
Status of Priority Species: Relative Abundance (Department for Environment, Food & Rural Affairs, 2023).
Valdez, J. W. et al. The undetectability of global biodiversity trends using local species richness. Ecography 2023, e06604 (2023).
doi: 10.1111/ecog.06604
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
doi: 10.1126/science.aaw1313 pubmed: 31604313
Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).
doi: 10.1111/ele.13495 pubmed: 32266768
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122–10122 (2015).
doi: 10.1038/ncomms10122 pubmed: 26646209
Capdevila, P., Noviello, N., McRae, L., Freeman, R. & Clements, C. F. Global patterns of resilience decline in vertebrate populations. Ecol. Lett. 25, 240–251 (2022).
doi: 10.1111/ele.13927 pubmed: 34784650
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
doi: 10.1038/461472a pubmed: 19779433
White, E. R. Minimum time required to detect population trends: the need for long-term monitoring programs. BioScience 69, 40–46 (2019).
doi: 10.1093/biosci/biy144
Boyd, R. J., Powney, G. D. & Pescott, O. L. We need to talk about nonprobability samples. Trends Ecol. Evol. 38, 521–531 (2023).
doi: 10.1016/j.tree.2023.01.001 pubmed: 36775795
Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).
doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
Meng, X.-L. Statistical paradises and paradoxes in big data (I): low of large populations, big data paradox, and the 2016 US presidential election. Ann. Appl. Stat. 12, 685–726 (2018).
doi: 10.1214/18-AOAS1161SF
Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).
doi: 10.1038/s41586-022-04617-0 pubmed: 35444280
Jandt, U. et al. ReSurveyGermany: vegetation-plot time-series over the past hundred years in Germany. Sci. Data 9, 631 (2022).
doi: 10.1038/s41597-022-01688-6 pubmed: 36261458 pmcid: 9581966
OpenTree. Open Tree of Life Synthetic Tree version 13.4 https://doi.org/10.5281/zenodo.3937741 (2019).
Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).
doi: 10.1111/2041-210X.12593
Grafen, A. & Hamilton, W. D. The phylogenetic regression. Philos. Trans. R. Soc. B 326, 119–157 (1989).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
doi: 10.1093/bioinformatics/bty633 pubmed: 30016406
Breeding Bird Survey (BTO, 2020, accessed May 1st 2023); https://doi.org/10.5066/P97WAZE5 .
Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 71, 319–392 (2009).
doi: 10.1111/j.1467-9868.2008.00700.x
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
doi: 10.21105/joss.01686
Arel-Bundock, V., Enevoldsen, N. & Yetman, C. countrycode: an R package to convert country names and country codes. J. Open Source Softw. 3, 848 (2018).
doi: 10.21105/joss.00848
Firke, S. janitor: Simple Tools for Examining and Cleaning Dirty Data https://sfirke.github.io/janitor/authors.html (2024).
Müller K. here: A Simpler Way to Find Your Files Version 1.0.1 https://here.r-lib.org/ (2020)
Richardson, N. et al. arrow: Integration to ‘Apache’ ‘Arrow’ Version 15.0.0 https://github.com/apache/arrow/ (2024).
Wickham H. ggplot2: Elegant Graphics for Data Analysis https://ggplot2.tidyverse.org (Springer, 2016).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
doi: 10.1111/2041-210X.12628

Auteurs

T F Johnson (TF)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK. t.f.johnson@sheffield.ac.uk.

A P Beckerman (AP)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.

D Z Childs (DZ)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.

T J Webb (TJ)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.

K L Evans (KL)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.

C A Griffiths (CA)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.
Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden.

P Capdevila (P)

School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK.
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain.
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.

C F Clements (CF)

School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK.

M Besson (M)

School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK.
Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France.

R D Gregory (RD)

RSPB Centre for Conservation Science, The Lodge, Sandy, UK.
Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK.

G H Thomas (GH)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.

E Delmas (E)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.
Habitat, Montreal, Quebec, Canada.
Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, Quebec, Canada.

R P Freckleton (RP)

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.
Debrecen Biodiversity Centre, University of Debrecen, Debrecen, Hungary.

Classifications MeSH