Removal of dead fish eggs by Asellus aquaticus as a potential biological control in aquaculture.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 Mar 2024
27 Mar 2024
Historique:
received:
30
08
2023
accepted:
22
03
2024
medline:
28
3
2024
pubmed:
28
3
2024
entrez:
28
3
2024
Statut:
epublish
Résumé
The objective of the present experimental study was to gain a better understanding of the foraging activity of Asellus aquaticus during fish egg incubation. A. aquaticus were introduced into experimental setups of dead eggs, viable eggs and hatched larvae of zebrafish (Danio rerio), a commonly used model organism. The amount of A. aquaticus and the duration of their exposure to the eggs significantly affected the proportion of consumed dead eggs in each experimental cycle. A. aquaticus belongs to the group of aquatic detritivores, and no predatory behavior was observed during the experiments. These crustaceans could distinguish between the dead eggs and those containing living embryos. Furthermore, zebrafish larvae remained unharmed by A. aquaticus, even in the absence of alternative food source. These findings underscore the potential sanitary role of these crustaceans in natural waters and offer new perspectives on their possible use as biological control organisms in aquaculture hatcheries. Additionally, our results suggest a potential application of A. aquaticus in combating pathogens by reducing the growth substrates for bacteria and fungi.
Identifiants
pubmed: 38538844
doi: 10.1038/s41598-024-57903-4
pii: 10.1038/s41598-024-57903-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7295Subventions
Organisme : National Research, Development and Innovation Office
ID : NKFI K-135824
Organisme : New National Excellence Program of the Ministry for Culture and Innovation
ID : ÚNKP-23-4-II-MATE-4
Organisme : New National Excellence Program of the Ministry for Culture and Innovation
ID : ÚNKP-23-3-I-MATE/22
Informations de copyright
© 2024. The Author(s).
Références
Johnston, T. A. et al. Hatching success of walleye embryos in relation to maternal and ova characteristics. Ecol. Freshw. Fish 16, 295–306 (2007).
doi: 10.1111/j.1600-0633.2006.00219.x
Rodríguez-Muñoz, R. & Tregenza, T. Genetic compatibility and hatching success in the sea lamprey (Petromyzon marinus). Biol. Lett. 5, 286–288 (2009).
pubmed: 19049954
doi: 10.1098/rsbl.2008.0650
Gallego, V., Pérez, L., Asturiano, J. F. & Yoshida, M. Relationship between spermatozoa motility parameters, sperm/egg ratio, and fertilization and hatching rates in pufferfish (Takifugu niphobles). Aquaculture 416, 238–243 (2013).
doi: 10.1016/j.aquaculture.2013.08.035
Barnes, M. E., Ewing, D. E., Cordes, R. J. & Young, G. L. Observations on hydrogen peroxide control of Saprolegnia spp. during rainbow trout egg incubation. Prog. Fish. Cult. 60, 67–70 (1998).
doi: 10.1577/1548-8640(1998)060<0067:OOHPCO>2.0.CO;2
St Mary, C. M., Gordon, E. & Hale, R. E. Environmental effects on egg development and hatching success in Jordanella floridae, a species with parental care. J. Fish Biol. 65, 760–768 (2004).
doi: 10.1111/j.0022-1112.2004.00481.x
Cook, M. A., Guthrie, K. M., Rust, M. B. & Plesha, P. D. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac. Res. 36, 1298–1303 (2005).
doi: 10.1111/j.1365-2109.2005.01346.x
Mhadhbi, L. & Beiras, R. Acute toxicity of seven selected pesticides (alachlor, atrazine, dieldrin, diuron, pirimiphos-methyl, chlorpyrifos, diazinon) to the marine fish (turbot, Psetta maxima). Water Air Soil Poll. 223, 5917–5930 (2012).
doi: 10.1007/s11270-012-1328-9
Subasinghe, R. P. & Sommerville, C. Disinfection of Oreochromis mossambicus (Peters) eggs against commonly occurring potentially pathogenic bacteria and fungi under artificial hatchery conditions. Aquac. Res. 16, 121–127 (1985).
doi: 10.1111/j.1365-2109.1985.tb00301.x
Wagner, E. J., Ronney, E. A., Billman, E. J., Forest, A. & Cavender, W. Comparison of the efficacy of iodine, formalin, salt, and hydrogen peroxide for control of external bacteria on rainbow trout eggs. N. Am. J. Aquacult. 70, 118–127 (2008).
doi: 10.1577/A06-068.1
El-Dakour, S., Saheb, A. I. & Al-Abdul-Elah, K. Effects of commonly used disinfectants on bacterial load, hatchability and survival of Bluefin Sea bream (Sparidentex hasta) eggs. Aquac. Res. 46, 1281–1291 (2015).
doi: 10.1111/are.12302
Marking, L. L., Rach, J. J. & Schreier, T. M. American fisheries society evaluation of antifungal agents for fish culture. Prog. Fish Cult. 56, 225–231 (1994).
doi: 10.1577/1548-8640(1994)056<0225:AFSEOA>2.3.CO;2
Vatsos, I. N., Thompson, K. D. & Adams, A. Colonization of rainbow trout, Oncorhynchus mykiss (Walbaum), eggs by Flavobacterium psychrophilum, the causative agent of rainbow trout fry syndrome. J. Fish Dis. 29, 441–444 (2006).
pubmed: 16866929
doi: 10.1111/j.1365-2761.2006.00735.x
Smith, S. N., Armstrong, R. A., Springate, J. & Barker, G. Infection and colonization of trout eggs by Saprolegniaceae. T. Brit. Mycol. Soc. 85, 719–764 (1985).
doi: 10.1016/S0007-1536(85)80268-0
Kitancharoen, N., Yuasa, K. & Hatai, K. Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience 37, 385–390 (1996).
doi: 10.1007/BF02460994
Rand, T. G. & Munden, D. Involvement of zoospores of Saprolegnia diclina (Oomycotina: Saprolegniaceae) in the attachment to and invasion of eggs of brook trout under experimental conditions. J. Aquat. Anim. Health 5, 233–239 (1993).
doi: 10.1577/1548-8667(1993)005<0233:IOZOSD>2.3.CO;2
Bell, G. R., Hoskins, G. E. & Hodgkiss, W. Aspects of the characterization, identification, and ecology of the bacterial flora associated with the surface of stream-incubating Pacific salmon (Oncorhynchus) eggs. J. Fish. Res. Board Can. 28, 1511–1525 (1971).
doi: 10.1139/f71-232
Hansen, G. H. & Olafsen, J. A. Bacterial colonisation of cod (Gadus morhua) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture. Appl. Environ. Microb. 55, 1435–1446 (1989).
doi: 10.1128/aem.55.6.1435-1446.1989
Léonard, N., Guiraud, J. P., Gasset, E., Cailleres, J. P. & Blancheton, J. P. Bacteria and nutrients—Nitrogen and carbon—In a recirculating system for sea bass production. Aquacult. Eng. 26, 111–127 (2002).
doi: 10.1016/S0144-8609(02)00008-0
Kawai, A., Yoshida, Y. & Kimata, M. Biochemical studies on the bacteria in aquarium with circulating system: 1. Changes of the qualities of breeding water and bacterial population of the aquarium during fish cultivation. B. Jpn. Soc. Fish 30, 55–62 (1964).
doi: 10.2331/suisan.30.55
Michaud, L., Blancheton, J. P., Bruni, V. & Piedrahita, R. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacult. Eng. 34, 224–233 (2006).
doi: 10.1016/j.aquaeng.2005.07.005
Castro, R. et al. Disparate developmental patterns of immune responses to bacterial and viral infections in fish. Sci. Rep.-UK 5, 1–13 (2015).
Schlumberger, O. & Proteau, J. P. Reproduction of pike-perch (Stizostedion lucioperca) in captivity. J. Appl. Ichthyol. 12, 149–152 (1996).
doi: 10.1111/j.1439-0426.1996.tb00080.x
Treasurer, J. W. A review of potential pathogens of sea lice and the application of cleaner fish in biological control. Pest Manag. Sci. 58, 546–558 (2002).
pubmed: 12138621
doi: 10.1002/ps.509
Skiftesvik, A. B. et al. Wrasse (Labridae) as cleaner fish in salmonid aquaculture –The Hardangerfjord as a case study. Mar. Biol. Res. 10, 289–300 (2014).
doi: 10.1080/17451000.2013.810760
Oseid, D. M. Control of fungus growth on fish eggs by Asellus militaris and Gammarus pseudolimnaeus. Trans. Am. Fish. Soc. 106, 192–195 (1977).
doi: 10.1577/1548-8659(1977)106<192:COFGOF>2.0.CO;2
Murphy, P. M. & Learner, M. A. The life history and production of Asellus aquaticus (Crustacea: Isopoda) in the River Ely, South Wels. Freshw. Biol. 12, 435–444 (1982).
doi: 10.1111/j.1365-2427.1982.tb00638.x
Rossi, L. & Fano, A. E. Role of fungi in the trophic niche of congeneric detrivorous Asellus aquaticus and A, coxalis (Isopoda). Oikos 32, 380–385 (1979).
doi: 10.2307/3544749
Graça, M. A. S., Maltby, L. & Calow, P. Comparative ecology of Gammarus pulex (L.) and Asellus aquaticus (L.) I: Population dynamics and microdistribution. Hydrobiologia 281, 155–162 (1994).
doi: 10.1007/BF00028678
Strähle, U. et al. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33, 128–132 (2012).
pubmed: 21726626
doi: 10.1016/j.reprotox.2011.06.121
Chuang, L. S. et al. Zebrafish modeling of intestinal injury, bacterial exposures and medications defines epithelial in vivo responses relevant to human inflammatory bowel disease. Dis. Model Mech. 12(8), dmm037432 (2019).
pubmed: 31337664
pmcid: 6737949
doi: 10.1242/dmm.037432
Du, W., Chen, X., Shi, M., Bian, F. & Zhao, Z. Ethanol affects behavior and HPA axis activity during development in zebrafish larvae. Sci. Rep. 10(1), 21402 (2020).
pubmed: 33293624
pmcid: 7722840
doi: 10.1038/s41598-020-78573-y
Hill, B. N. et al. Assessment of larval zebrafish locomotor activity for developmental neurotoxicity screening. In Experimental Neurotoxicology Methods (eds Llorens, J. & Barenys, M.) 327–351 (Springer, 2021).
doi: 10.1007/978-1-0716-1637-6_15
Bloor, M. C. Dietary preference of Gammarus pulex and Asellus aquaticus during a laboratory breeding programme for ecotoxicological studies. Int. J. Zool. 2011, 1–5 (2011).
doi: 10.1155/2011/294394
Rosenthal, G. A. & Janzen, D. H. Herbivores: Their Interaction with Secondary Plant Metabolites (Academic Press, 1979).
Taylor, N. G. & Dunn, A. M. Size matters: Predation of fish eggs and larvae by native and invasive amphipods. Biol. Invasions 19, 89–107 (2017).
pubmed: 32355455
doi: 10.1007/s10530-016-1265-4
Moorman, S. J. Development of sensory Systems in Zebrafish (Donio rerio). ILAR J. 42(4), 292–298 (2001).
pubmed: 11581521
doi: 10.1093/ilar.42.4.292
Neuhauss, S. C. Zebrafish vision: Structure and function of the zebrafish visual system. In Fish Physiology Vol. 29 (ed. Neuhauss, S. C.) 81–122 (Academic Press, 2010).
Kalueff, A. V. & Cachat, J. M. (eds) Zebrafish Models in Neurobehavioral Research (Humana Press, 2011).
Shang, E. H. & Wu, R. S. Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ. Sci. Technol. 38(18), 4763–4767 (2004).
pubmed: 15487785
doi: 10.1021/es0496423
Sear, D. A. et al. Does fine sediment source as well as quantity affect salmonid embryo mortality and development?. Sci. Total Environ. 541, 957–968 (2016).
pubmed: 26473698
doi: 10.1016/j.scitotenv.2015.09.155
Kinzler, W. & Maier, G. Asymmetry in mutual predation: Possible reason for the replacement of native gammarids by invasives. Arch. Hydrobiol. 157, 473–481 (2003).
doi: 10.1127/0003-9136/2003/0157-0473