Exploring the complex interrelation between depressive symptoms, risk, and protective factors: A comprehensive network approach.
Acceptance
Depression
Network analysis
Protective factors
Risk factors
Stress
Journal
Journal of affective disorders
ISSN: 1573-2517
Titre abrégé: J Affect Disord
Pays: Netherlands
ID NLM: 7906073
Informations de publication
Date de publication:
26 Mar 2024
26 Mar 2024
Historique:
received:
28
09
2023
revised:
19
02
2024
accepted:
23
03
2024
medline:
29
3
2024
pubmed:
29
3
2024
entrez:
28
3
2024
Statut:
aheadofprint
Résumé
Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.
Sections du résumé
BACKGROUND
BACKGROUND
Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression.
METHODS
METHODS
Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test.
RESULTS
RESULTS
Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients.
CONCLUSION
CONCLUSIONS
The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.
Identifiants
pubmed: 38548192
pii: S0165-0327(24)00543-3
doi: 10.1016/j.jad.2024.03.119
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2024. Published by Elsevier B.V.
Déclaration de conflit d'intérêts
Declaration of competing interest We report no conflicts of interest.