Insights into the genomic features and lifestyle of B1 subcluster mycobacteriophages.
B1 subcluster
biofilm
evolution
hypothetical proteins
lysogeny
mycobacteriophage
Journal
Journal of basic microbiology
ISSN: 1521-4028
Titre abrégé: J Basic Microbiol
Pays: Germany
ID NLM: 8503885
Informations de publication
Date de publication:
28 Mar 2024
28 Mar 2024
Historique:
received:
20
01
2024
accepted:
24
02
2024
medline:
29
3
2024
pubmed:
29
3
2024
entrez:
29
3
2024
Statut:
aheadofprint
Résumé
Bacteriophages infecting Mycobacterium smegmatis mc
Identifiants
pubmed: 38548701
doi: 10.1002/jobm.202400027
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202400027Subventions
Organisme : Indian Council of Medical Research
ID : 5/8/5/38/2019-ECD-I
Organisme : University Grants Commission
Organisme : Department of Science and Technology
Organisme : the Council for Scientific and Industrial Research
Informations de copyright
© 2024 Wiley‐VCH GmbH.
Références
Cresawn SG, Pope WH, Jacobs‐Sera D, Bowman CA, Russell DA, Dedrick RM, et al. Comparative genomics of Cluster O mycobacteriophages. PLoS One. 2015;10:e0118725.
Apellido KA, Balchander D, Erlich MC, Gocal JK, Gocal WA, Haile S, et al. Complete genome sequences of 12 B1 cluster mycobacteriophages, Gareth, JangoPhett, Kailash, MichaelPhcott, PhenghisKhan, Phleuron, Phergie, PhrankReynolds, PhrodoBaggins, Phunky, Vaticameos, and Virapocalypse. Microbiol Resour Announc. 2019;8:e01387–18.
Bajpai U, Mehta AK, Eniyan K, Sinha A, Ray A, Virdi S, et al. Isolation and characterization of bacteriophages from India, with lytic activity against Mycobacterium tuberculosis. Can J Microbiol. 2018;64:483–491.
Sinha A, Eniyan K, Manohar P, Ramesh N, Bajpai U. Characterization and genome analysis of B1 sub‐cluster mycobacteriophage PDRPxv. Virus Res. 2020;279:197884.
Smith KC, Castro‐Nallar E, Fisher JN, Breakwell DP, Grose JH, Burnett SH. Phage cluster relationships identified through single gene analysis. BMC Genomics. 2013;14:410.
Cresawn SG, Bogel M, Day N, Jacobs‐Sera D, Hendrix RW, Hatfull GF. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics. 2011;12:395.
Laslett D. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–16.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
Prakash A, Jeffryes M, Bateman A, Finn RD. The HMMER web server for protein sequence similarity search. Curr Protoc Bioinformatics. 2017;60:3.15.1–3.15.23.
Cantu VA, Salamon P, Seguritan V, Redfield J, Salamon D, Edwards RA, et al. PhANNs, a fast and accurate tool and web server to classify phage structural proteins. PLoS Comput Biol. 2020;16:e1007845.
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–580.
Shen HB, Chou KC. Predicting protein fold pattern with functional domain and sequential evolution information. J Theor Biol. 2009;256:441–446.
Pan X, Zuallaert J, Wang X, Shen HB, Campos EP, Marushchak DO, et al. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics. 2021;36:5159–5168.
Hwang S, Gou Z, Kuznetsov IB. DP‐Bind: a web server for sequence‐based prediction of DNA‐binding residues in DNA‐binding proteins. Bioinformatics. 2007;23:634–636.
Ding H, Yang W, Tang H, Feng PM, Huang J, Chen W, et al. PHYPred: a tool for identifying bacteriophage enzymes and hydrolases. Virol Sin. 2016;31:350–352.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I‐TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.
Guerrero‐Bustamante CA, Dedrick RM, Garlena RA, Russell DA, Hatfull GF. Toward a phage cocktail for tuberculosis: susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains. mBio. 2021;12:e00973–21.
Altamirano FLG, Barr JJ. Screening for lysogen activity in therapeutically relevant bacteriophages. Bio‐protocol. 2021;11:e3997.
Ssengooba W, Kamya D, Nakavuma J, Achan B, Semanda J. Mycobacteriophages exhibit antibiofilm activity at high multiplicities of infection. Res Sq. 2022. https://doi.org/10.21203/rs.3.rs-1932294/v1
Chakraborty P, Bajeli S, Kaushal D, Radotra BD, Kumar A. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun. 2021;12:1606.
Eniyan K, Sinha A, Ahmad S, Bajpai U. Functional characterization of the endolysins derived from mycobacteriophage PDRPxv. World J Microbiol Biotechnol. 2020;36:83.
Hatfull GF, Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA‐PHAGES) Program, KwaZulu‐Natal Research Institute for Tuberculosis and HIV (K‐RITH) Mycobacterial Genetics Course, University of California–Los Angeles Research Immersion Laboratory in Virology, Phage Hunters Integrating Research and Education (PHIRE) Program. Complete genome sequences of 61 mycobacteriophages. Genome Announc. 2016;4:e00389–16.
Kamilla S, Jain V. Mycobacteriophage D29 holin C‐terminal region functionally assists in holin aggregation and bacterial cell death. FEBS J. 2016;283:173–190.
Cheng H, Shen N, Pei J, Grishin NV. Double‐stranded DNA bacteriophage prohead protease is homologous to herpesvirus protease. Prot Sci. 2004;13:2260–2269.
Steinmetzer K. CopR binds and bends its target DNA: a footprinting and fluorescence resonance energy transfer study. Nucleic Acids Res. 2002;30:2052–2060.
Nowacka M, Fernandes H, Kiliszek A, Bernat A, Lach G, Bujnicki JM. Specific interaction of zinc finger protein Com with RNA and the crystal structure of a self‐complementary RNA duplex recognized by Com. PLoS One. 2019;14:e0214481.
Al‐Khodor S, Price CT, Kalia A, Abu Kwaik Y. Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol. 2010;18:132–139.
Bordenstein SR, Bordenstein SR. Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun. 2016;7:13155.
Cornelissen A, Ceyssens PJ, Krylov VN, Noben JP, Volckaert G, Lavigne R. Identification of EPS‐degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology. 2012;434:251–256.
Brown KL, Sarkis GJ, Wadsworth C, Hatfull GF. Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J. 1997;16:5914–5921.
Better M, Wickner S, Auerbach J, Echols H. Role of the Xis protein of bacteriophage λ in a specific reactive complex at the attR prophage attachment site. Cell. 1983;32:161–168.
Wetzel KS, Aull HG, Zack KM, Garlena RA, Hatfull GF. Protein‐mediated and RNA‐based origins of replication of extrachromosomal mycobacterial prophages. mBio. 2020;11:e00385–20.
Tageldin MH, El Hassan AM, Mustafa IE. Spontaneous release of mycophages from lysogenic bovine strains. Tubercle. 1981;62:263–269.
Dedrick RM, Smith BE, Garlena RA, Russell DA, Aull HG, Mahalingam V, et al. Mycobacterium abscessus strain morphotype determines phage susceptibility, the repertoire of therapeutically useful phages, and phage resistance. mBio. 2021;12:e03431–20.
Pasechnek A, Rabinovich L, Stadnyuk O, Azulay G, Mioduser J, Argov T, et al. Active lysogeny in Listeria monocytogenes is a bacteria‐phage adaptive response in the mammalian environment. Cell Rep. 2020;32:107956.
Danis‐Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating bacterial infections with bacteriophage‐based enzybiotics: in vitro, in vivo and clinical application. Antibiotics. 2021;10:1497.
Kiefer B, Dahl JL. Disruption of Mycobacterium smegmatis biofilms using bacteriophages alone or in combination with mechanical stress . Adv Microbiol. 2015;05:699–710.
Daugavet MA, Shabelnikov SV, Podgornaya OI. Amino acid sequence associated with bacteriophage recombination site helps to reveal genes potentially acquired through horizontal gene transfer. BMC Bioinformatics. 2020;21:305.
Zinke M, Schröder GF, Lange A. Major tail proteins of bacteriophages of the order Caudovirales. J Biol Chem. 2022;298:101472.
Hatfull GF. Mycobacteriophages. Microbiol Spectr. 2018;6:10.1128. https://doi.org/10.1128/microbiolspec.GPP3-0026-2018
Hatfull GF. The secret lives of mycobacteriophages. Adv Virus Res. 2012;82:179–288.
Wallace, Jr. RJ, Nash DR, Tsukamura M, Blacklock ZM, Silcox VA. Human disease due to Mycobacterium smegmatis. J Infect Dis. 1988;158:52–59.