Anaerobic fungi in the tortoise alimentary tract illuminate early stages of host-fungal symbiosis and Neocallimastigomycota evolution.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 Mar 2024
28 Mar 2024
Historique:
received:
07
09
2023
accepted:
18
03
2024
medline:
29
3
2024
pubmed:
29
3
2024
entrez:
29
3
2024
Statut:
epublish
Résumé
Anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycota symbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition in Neocallimastigomycota.
Identifiants
pubmed: 38548766
doi: 10.1038/s41467-024-47047-4
pii: 10.1038/s41467-024-47047-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2714Subventions
Organisme : National Science Foundation (NSF)
ID : 2029478
Organisme : National Science Foundation (NSF)
ID : 2029478
Informations de copyright
© 2024. The Author(s).
Références
Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).
pubmed: 28393285
doi: 10.1007/s00394-017-1445-8
Moeller, A. H. & Sanders, J. G. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190597 (2020).
doi: 10.1098/rstb.2019.0597
Wunderlich, G., Bull, M., Ross, T., Rose, M. & Chapman, B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim. Microbiome 5, 3 (2023).
pubmed: 36635784
pmcid: 9837927
doi: 10.1186/s42523-022-00224-6
Sues, H.-D. & Reisz, R. R. Origins and early evolution of herbivory in tetrapods. Trend Ecol. Evol. 13, 141–145 (1998).
doi: 10.1016/S0169-5347(97)01257-3
King G. Reptiles and Herbivory (Chapman & Hall, 1996).
Collinson, M. E. & Hooker, J. J. Fossil evidence of interactions between plants and plant-eating mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 333, 197–207 (1991).
pubmed: 1682959
doi: 10.1098/rstb.1991.0068
Hume I. D., Warner A. C. I. Evolution of microbial digestion in mammals. In Proc. Digestive Physiology and Metabolism in Ruminants: Proceedings of the 5th International Symposium on Ruminant Physiology, held at Clermont—Ferrand, on 3rd–7th September, 1979 (eds Ruckebusch Y., Thivend P.) (Springer Netherlands, 1980).
Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).
pubmed: 18180751
doi: 10.1038/nrmicro1817
Gruninger, R. J., McAllister, T. A. & Forster, R. J. Bacterial and archaeal diversity in the gastrointestinal tract of the North American beaver (Castor canadensis). PLoS One 11, e0156457 (2016).
pubmed: 27227334
pmcid: 4881982
doi: 10.1371/journal.pone.0156457
Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).
pubmed: 18497261
pmcid: 2649005
doi: 10.1126/science.1155725
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
pubmed: 21596990
pmcid: 3303602
doi: 10.1126/science.1198719
St-Pierre, B. & Wright, A. D. G. Diversity of gut methanogens in herbivorous animals. Animal 7, 49–56 (2013).
pubmed: 22717175
doi: 10.1017/S1751731112000912
Stevenson, D. M. & Weimer, P. J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75, 165–174 (2007).
pubmed: 17235560
doi: 10.1007/s00253-006-0802-y
Thomas, C. M., Desmond-Le Quéméner, E., Gribaldo, S. & Borrel, G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13, 3358 (2022).
pubmed: 35688919
pmcid: 9187648
doi: 10.1038/s41467-022-31038-4
Youngblut, N. D. et al. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 6, 1443–1454 (2021).
pubmed: 34702978
pmcid: 8556154
doi: 10.1038/s41564-021-00980-2
García-Amado, M. A. et al. Bacterial diversity in the cecum of the world’s largest living rodent (Hydrochoerus hydrochaeris). Micro. Ecol. 63, 719–725 (2012).
doi: 10.1007/s00248-011-9963-z
Andersen, T. O. et al. Metabolic influence of core ciliates within the rumen microbiome. ISME J. 17, 1128–1140 (2023).
pubmed: 37169869
pmcid: 10284877
doi: 10.1038/s41396-023-01407-y
Gürelli, G., Canbulat, S., Aldayarov, N. & Dehority, B. A. Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan. FEMS Microbiol. Lett. 363, fnw028 (2016).
pubmed: 26850444
doi: 10.1093/femsle/fnw028
Gürelli, G. & Göçmen, B. Intestinal ciliate composition found in the feces of racing horses from Izmir, Turkey. Eur. J. Protist. 48, 215–226 (2012).
doi: 10.1016/j.ejop.2012.01.002
Newbold, C. J., de la Fuente, G., Belanche, A., Ramos-Morales, E. & McEwan, N. R. The role of ciliate protozoa in the rumen. Front. Microbiol. 6, 1313 (2015).
pubmed: 26635774
pmcid: 4659874
doi: 10.3389/fmicb.2015.01313
Solomon, R. et al. Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. ISME J. 16, 1187–1197 (2022).
pubmed: 34887549
doi: 10.1038/s41396-021-01170-y
Gruninger, R. J. et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 9, 1581 (2018).
pubmed: 30061875
pmcid: 6054980
doi: 10.3389/fmicb.2018.01581
Gruninger, R. J. et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 90, 1–17 (2014).
pubmed: 25046344
doi: 10.1111/1574-6941.12383
Hagen, L. H. et al. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 15, 421–434 (2021).
pubmed: 32929206
doi: 10.1038/s41396-020-00769-x
Hanafy, R. A., Johnson, B., Youssef, N. H. & Elshahed, M. S. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ. Microbiol. 22, 3883–3908 (2020).
pubmed: 32656919
doi: 10.1111/1462-2920.15164
Hess, M. et al. Anaerobic fungi: past, present, and future. Front. Microbiol. 11, 584893 (2020).
pubmed: 33193229
pmcid: 7609409
doi: 10.3389/fmicb.2020.584893
Meili, C. H. et al. Patterns and determinants of the global herbivorous mycobiome. Nat. Commun. 14, 3798 (2023).
pubmed: 37365172
pmcid: 10293281
doi: 10.1038/s41467-023-39508-z
Le, M., Raxworthy, C. J., McCord, W. P. & Mertz, L. A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Mol. Phylogenet Evol. 40, 517–531 (2006).
pubmed: 16678445
doi: 10.1016/j.ympev.2006.03.003
Barboza, P. S. Digesta passage and functional anatomy of the digestive tract in the desert tortoise (Xerobates agassizii). J. Comp. Physiol. B 165, 193–202 (1995).
pubmed: 7665734
doi: 10.1007/BF00260810
Hatt, J.-M., Clauss, M., Gisler, R., Liesegang, A. & Wanner, M. Fiber digestibility in juvenile Galapagos tortoises (Geochelone nigra) and implications for the development of captive animals. Zoo Biol. 24, 185–191 (2005).
doi: 10.1002/zoo.20039
Yuan, M. L. et al. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise. Mol. Ecol. 24, 2521–2536 (2015).
pubmed: 25809385
doi: 10.1111/mec.13169
Wang, Y. et al. Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4, e00247–00219 (2019).
pubmed: 31455637
pmcid: 6712302
doi: 10.1128/mSystems.00247-19
Pratt C. J., Chandler E. E., Youssef N. H., Elshahed M. S. Testudinimyces gracilis gen. nov, sp. nov. and Astrotestudinimyces divisus gen. nov, sp. nov., two novel, deep-branching anaerobic gut fungal genera from tortoise faeces. Int. J. Syst. Evol. Microbiol. 73, https://doi.org/10.1099/ijsem.1090.005921 (2023).
Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2717–2729 (2008).
pubmed: 18468979
pmcid: 2606767
doi: 10.1098/rstb.2008.0031
Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).
pubmed: 22688819
pmcid: 3372258
doi: 10.1128/MMBR.05024-11
Youssef, N. H. et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 79, 4620–4634 (2013).
pubmed: 23709508
pmcid: 3719515
doi: 10.1128/AEM.00821-13
Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell Dev. Biol. 9, 675465 (2021).
pubmed: 34277617
pmcid: 8280776
doi: 10.3389/fcell.2021.675465
Kouvelis, V. N. & Hausner, G. Editorial: mitochondrial genomes and mitochondrion related gene insights to fungal evolution. Front. Microbiol. 13, 897981 (2022).
pubmed: 35479620
pmcid: 9036184
doi: 10.3389/fmicb.2022.897981
Murphy, C. L. et al. Horizontal gene transfer forged the evolution of anaerobic gut fungi into a phylogenetically distinct gut-dwelling fungal lineage. Appl. Environ. Microbiol. 85, e00988–00919 (2019).
pubmed: 31126947
pmcid: 6643240
doi: 10.1128/AEM.00988-19
Steenbakkers, P. J. et al. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J. Bacteriol. 183, 5325–5333 (2001).
pubmed: 11514516
pmcid: 95415
doi: 10.1128/JB.183.18.5325-5333.2001
Shoham, Y., Lamed, R. & Bayer, E. A. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7, 275–281 (1999).
pubmed: 10390637
doi: 10.1016/S0966-842X(99)01533-4
Couger, M. B., Youssef, N. H., Struchtemeyer, C. G., Liggenstoffer, A. S. & Elshahed, M. S. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol. Biofuels 8, 208 (2015).
pubmed: 26649073
pmcid: 4672494
doi: 10.1186/s13068-015-0390-0
Haitjema, C. H. et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol 2, 17087 (2017).
pubmed: 28555641
doi: 10.1038/nmicrobiol.2017.87
Solomon, K. V. et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351, 1192–1195 (2016).
pubmed: 26912365
pmcid: 5098331
doi: 10.1126/science.aad1431
Brown, J. L. et al. Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnol. Biofuels 14, 234 (2021).
pubmed: 34893091
pmcid: 8665504
doi: 10.1186/s13068-021-02083-w
Zhou, J. & Ning, D. Stochastic community assembly: does It matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
pubmed: 29021219
pmcid: 5706748
doi: 10.1128/MMBR.00002-17
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).
pubmed: 28985326
pmcid: 5978021
doi: 10.1093/icb/icx090
Claesen, J. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. 12, eaay5445 (2020).
pubmed: 33208503
pmcid: 8478231
doi: 10.1126/scitranslmed.aay5445
Khan, I. et al. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front. Cell Infect. Microbiol. 11, 716299 (2021).
pubmed: 35004340
pmcid: 8733563
doi: 10.3389/fcimb.2021.716299
Shoemaker, L. & Clauset, A. Body mass evolution and diversification within horses (family Equidae). Ecol. Lett. 17, 211–220 (2014).
pubmed: 24304872
doi: 10.1111/ele.12221
Eizirik, E., Murphy, W. J. & O’Brien, S. J. Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92, 212–219 (2001).
pubmed: 11396581
doi: 10.1093/jhered/92.2.212
Hackmann, T. J. & Spain, J. N. Ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93, 1320–1334 (2010).
pubmed: 20338409
doi: 10.3168/jds.2009-2071
Heckeberg, N. S. The systematics of the Cervidae: a total evidence approach. PeerJ 8, e8114 (2020).
pubmed: 32110477
pmcid: 7034380
doi: 10.7717/peerj.8114
Lovegrove, B. G., Lobban, K. D. & Levesque, D. L. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs. Proc. Biol. Sci. 281, 20141304 (2014).
pubmed: 25339721
pmcid: 4213634
Rose K. D. The beginning of the age of mammals. (Johns Hopkins University Press, 2006).
Mackie, R. I. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 42, 319–326 (2002).
pubmed: 21708724
doi: 10.1093/icb/42.2.319
Hodkinson T. Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Ann. Plant. Rev. Online 1, 255–294 (2018).
Elliott, R., Ash, A. J., Calderon-Cortes, F., Norton, B. W. & Bauchop, T. The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J. Agric. Sci. 109, 13–17 (1987).
doi: 10.1017/S0021859600080928
Huws, S. A. et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 9, 2161 (2018).
pubmed: 30319557
pmcid: 6167468
doi: 10.3389/fmicb.2018.02161
Nolan J. V., Leng R. A., Demeyer D. I. The roles of protozoa and fungi in ruminant digestion. In Proc. International Seminar Held at the University of New England, Armidale, Australia, 26–29th September, 1988. (Penambul Books, 1989).
Saye L. M. G., et al. The anaerobic fungi: challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms 9, 694 (2021).
Calkins, S., Elledge, N. C., Hanafy, R. A., Elshahed, M. S. & Youssef, N. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. J. Microbiol. Method 127, 206–213 (2016).
doi: 10.1016/j.mimet.2016.05.019
Hooker, C. A., Hanafy, R., Hillman, E. T., Muñoz Briones, J. & Solomon, K. V. A genetic engineering toolbox for the lignocellulolytic anaerobic gut fungus Neocallimastix frontalis. ACS Synth. Biol. 12, 1034–1045 (2023).
pubmed: 36920337
doi: 10.1021/acssynbio.2c00502
Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, R721–R735 (2020).
pubmed: 32574638
doi: 10.1016/j.cub.2020.04.088
Young, D. et al. Simultaneous metabarcoding and quantification of Neocallimastigomycetes from environmental samples: Insights into community composition and novel lineages. Microorganisms 10, 1749 (2022).
pubmed: 36144352
pmcid: 9504928
doi: 10.3390/microorganisms10091749
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol 75, 7537–7541 (2009).
pubmed: 19801464
pmcid: 2786419
doi: 10.1128/AEM.01541-09
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8, e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610
pmcid: 3516142
doi: 10.1093/bioinformatics/bts565
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
pubmed: 34320186
pmcid: 8476166
doi: 10.1093/molbev/msab199
Hanafy R. A., et al. Phylogenomic analysis of the Neocallimastigomycota: Proposal of Caecomycetaceae fam. nov., Piromycetaceae fam. nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae. Int. J. Syst. Evol. Microbiol. 73, 1466–5034 (2023).
Wilken, S. E. et al. Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. mSystems 16, e00002–e00021 (2021).
Li, Y. et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front. Microbiol. 10, 435 (2019).
pubmed: 30894845
pmcid: 6414434
doi: 10.3389/fmicb.2019.00435
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
pubmed: 29718447
pmcid: 6101584
doi: 10.1093/sysbio/syy032
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
pubmed: 29942656
pmcid: 6007674
doi: 10.1093/ve/vey016
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
pubmed: 26585406
doi: 10.1016/j.jmb.2015.11.006
Boothby, T. C. et al. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc. Natl Acad. Sci. USA 112, 15976–15981 (2015).
pubmed: 26598659
pmcid: 4702960
doi: 10.1073/pnas.1510461112
Koutsovoulos, G. et al. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc. Natl Acad. Sci. USA 113, 5053–5058 (2016).
pubmed: 27035985
pmcid: 4983863
doi: 10.1073/pnas.1600338113
Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucl. Acids Res. 50, W228–W234 (2022).
pubmed: 35489069
pmcid: 9252801
doi: 10.1093/nar/gkac278
Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51, D384–d388 (2023).
pubmed: 36477806
doi: 10.1093/nar/gkac1096
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
pubmed: 19377485
doi: 10.1038/nmeth.1322
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Youssef N. H. Code for analyzing AGF community in tortoises [Data set]. In Anaerobic fungi in the tortoise alimentary tract illuminate early stages of host-fungal symbiosis and Neocallimastigomycota evolution. Zenodo. https://doi.org/10.5281/zenodo.10728114 (2024).