Anaerobic fungi in the tortoise alimentary tract illuminate early stages of host-fungal symbiosis and Neocallimastigomycota evolution.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 Mar 2024
Historique:
received: 07 09 2023
accepted: 18 03 2024
medline: 29 3 2024
pubmed: 29 3 2024
entrez: 29 3 2024
Statut: epublish

Résumé

Anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycota symbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition in Neocallimastigomycota.

Identifiants

pubmed: 38548766
doi: 10.1038/s41467-024-47047-4
pii: 10.1038/s41467-024-47047-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2714

Subventions

Organisme : National Science Foundation (NSF)
ID : 2029478
Organisme : National Science Foundation (NSF)
ID : 2029478

Informations de copyright

© 2024. The Author(s).

Références

Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).
pubmed: 28393285 doi: 10.1007/s00394-017-1445-8
Moeller, A. H. & Sanders, J. G. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190597 (2020).
doi: 10.1098/rstb.2019.0597
Wunderlich, G., Bull, M., Ross, T., Rose, M. & Chapman, B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim. Microbiome 5, 3 (2023).
pubmed: 36635784 pmcid: 9837927 doi: 10.1186/s42523-022-00224-6
Sues, H.-D. & Reisz, R. R. Origins and early evolution of herbivory in tetrapods. Trend Ecol. Evol. 13, 141–145 (1998).
doi: 10.1016/S0169-5347(97)01257-3
King G. Reptiles and Herbivory (Chapman & Hall, 1996).
Collinson, M. E. & Hooker, J. J. Fossil evidence of interactions between plants and plant-eating mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 333, 197–207 (1991).
pubmed: 1682959 doi: 10.1098/rstb.1991.0068
Hume I. D., Warner A. C. I. Evolution of microbial digestion in mammals. In Proc. Digestive Physiology and Metabolism in Ruminants: Proceedings of the 5th International Symposium on Ruminant Physiology, held at Clermont—Ferrand, on 3rd–7th September, 1979 (eds Ruckebusch Y., Thivend P.) (Springer Netherlands, 1980).
Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).
pubmed: 18180751 doi: 10.1038/nrmicro1817
Gruninger, R. J., McAllister, T. A. & Forster, R. J. Bacterial and archaeal diversity in the gastrointestinal tract of the North American beaver (Castor canadensis). PLoS One 11, e0156457 (2016).
pubmed: 27227334 pmcid: 4881982 doi: 10.1371/journal.pone.0156457
Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).
pubmed: 18497261 pmcid: 2649005 doi: 10.1126/science.1155725
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
pubmed: 21596990 pmcid: 3303602 doi: 10.1126/science.1198719
St-Pierre, B. & Wright, A. D. G. Diversity of gut methanogens in herbivorous animals. Animal 7, 49–56 (2013).
pubmed: 22717175 doi: 10.1017/S1751731112000912
Stevenson, D. M. & Weimer, P. J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75, 165–174 (2007).
pubmed: 17235560 doi: 10.1007/s00253-006-0802-y
Thomas, C. M., Desmond-Le Quéméner, E., Gribaldo, S. & Borrel, G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13, 3358 (2022).
pubmed: 35688919 pmcid: 9187648 doi: 10.1038/s41467-022-31038-4
Youngblut, N. D. et al. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 6, 1443–1454 (2021).
pubmed: 34702978 pmcid: 8556154 doi: 10.1038/s41564-021-00980-2
García-Amado, M. A. et al. Bacterial diversity in the cecum of the world’s largest living rodent (Hydrochoerus hydrochaeris). Micro. Ecol. 63, 719–725 (2012).
doi: 10.1007/s00248-011-9963-z
Andersen, T. O. et al. Metabolic influence of core ciliates within the rumen microbiome. ISME J. 17, 1128–1140 (2023).
pubmed: 37169869 pmcid: 10284877 doi: 10.1038/s41396-023-01407-y
Gürelli, G., Canbulat, S., Aldayarov, N. & Dehority, B. A. Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan. FEMS Microbiol. Lett. 363, fnw028 (2016).
pubmed: 26850444 doi: 10.1093/femsle/fnw028
Gürelli, G. & Göçmen, B. Intestinal ciliate composition found in the feces of racing horses from Izmir, Turkey. Eur. J. Protist. 48, 215–226 (2012).
doi: 10.1016/j.ejop.2012.01.002
Newbold, C. J., de la Fuente, G., Belanche, A., Ramos-Morales, E. & McEwan, N. R. The role of ciliate protozoa in the rumen. Front. Microbiol. 6, 1313 (2015).
pubmed: 26635774 pmcid: 4659874 doi: 10.3389/fmicb.2015.01313
Solomon, R. et al. Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. ISME J. 16, 1187–1197 (2022).
pubmed: 34887549 doi: 10.1038/s41396-021-01170-y
Gruninger, R. J. et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 9, 1581 (2018).
pubmed: 30061875 pmcid: 6054980 doi: 10.3389/fmicb.2018.01581
Gruninger, R. J. et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 90, 1–17 (2014).
pubmed: 25046344 doi: 10.1111/1574-6941.12383
Hagen, L. H. et al. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 15, 421–434 (2021).
pubmed: 32929206 doi: 10.1038/s41396-020-00769-x
Hanafy, R. A., Johnson, B., Youssef, N. H. & Elshahed, M. S. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ. Microbiol. 22, 3883–3908 (2020).
pubmed: 32656919 doi: 10.1111/1462-2920.15164
Hess, M. et al. Anaerobic fungi: past, present, and future. Front. Microbiol. 11, 584893 (2020).
pubmed: 33193229 pmcid: 7609409 doi: 10.3389/fmicb.2020.584893
Meili, C. H. et al. Patterns and determinants of the global herbivorous mycobiome. Nat. Commun. 14, 3798 (2023).
pubmed: 37365172 pmcid: 10293281 doi: 10.1038/s41467-023-39508-z
Le, M., Raxworthy, C. J., McCord, W. P. & Mertz, L. A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Mol. Phylogenet Evol. 40, 517–531 (2006).
pubmed: 16678445 doi: 10.1016/j.ympev.2006.03.003
Barboza, P. S. Digesta passage and functional anatomy of the digestive tract in the desert tortoise (Xerobates agassizii). J. Comp. Physiol. B 165, 193–202 (1995).
pubmed: 7665734 doi: 10.1007/BF00260810
Hatt, J.-M., Clauss, M., Gisler, R., Liesegang, A. & Wanner, M. Fiber digestibility in juvenile Galapagos tortoises (Geochelone nigra) and implications for the development of captive animals. Zoo Biol. 24, 185–191 (2005).
doi: 10.1002/zoo.20039
Yuan, M. L. et al. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise. Mol. Ecol. 24, 2521–2536 (2015).
pubmed: 25809385 doi: 10.1111/mec.13169
Wang, Y. et al. Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4, e00247–00219 (2019).
pubmed: 31455637 pmcid: 6712302 doi: 10.1128/mSystems.00247-19
Pratt C. J., Chandler E. E., Youssef N. H., Elshahed M. S. Testudinimyces gracilis gen. nov, sp. nov. and Astrotestudinimyces divisus gen. nov, sp. nov., two novel, deep-branching anaerobic gut fungal genera from tortoise faeces. Int. J. Syst. Evol. Microbiol. 73, https://doi.org/10.1099/ijsem.1090.005921 (2023).
Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2717–2729 (2008).
pubmed: 18468979 pmcid: 2606767 doi: 10.1098/rstb.2008.0031
Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).
pubmed: 22688819 pmcid: 3372258 doi: 10.1128/MMBR.05024-11
Youssef, N. H. et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 79, 4620–4634 (2013).
pubmed: 23709508 pmcid: 3719515 doi: 10.1128/AEM.00821-13
Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell Dev. Biol. 9, 675465 (2021).
pubmed: 34277617 pmcid: 8280776 doi: 10.3389/fcell.2021.675465
Kouvelis, V. N. & Hausner, G. Editorial: mitochondrial genomes and mitochondrion related gene insights to fungal evolution. Front. Microbiol. 13, 897981 (2022).
pubmed: 35479620 pmcid: 9036184 doi: 10.3389/fmicb.2022.897981
Murphy, C. L. et al. Horizontal gene transfer forged the evolution of anaerobic gut fungi into a phylogenetically distinct gut-dwelling fungal lineage. Appl. Environ. Microbiol. 85, e00988–00919 (2019).
pubmed: 31126947 pmcid: 6643240 doi: 10.1128/AEM.00988-19
Steenbakkers, P. J. et al. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J. Bacteriol. 183, 5325–5333 (2001).
pubmed: 11514516 pmcid: 95415 doi: 10.1128/JB.183.18.5325-5333.2001
Shoham, Y., Lamed, R. & Bayer, E. A. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7, 275–281 (1999).
pubmed: 10390637 doi: 10.1016/S0966-842X(99)01533-4
Couger, M. B., Youssef, N. H., Struchtemeyer, C. G., Liggenstoffer, A. S. & Elshahed, M. S. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol. Biofuels 8, 208 (2015).
pubmed: 26649073 pmcid: 4672494 doi: 10.1186/s13068-015-0390-0
Haitjema, C. H. et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol 2, 17087 (2017).
pubmed: 28555641 doi: 10.1038/nmicrobiol.2017.87
Solomon, K. V. et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351, 1192–1195 (2016).
pubmed: 26912365 pmcid: 5098331 doi: 10.1126/science.aad1431
Brown, J. L. et al. Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnol. Biofuels 14, 234 (2021).
pubmed: 34893091 pmcid: 8665504 doi: 10.1186/s13068-021-02083-w
Zhou, J. & Ning, D. Stochastic community assembly: does It matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
pubmed: 29021219 pmcid: 5706748 doi: 10.1128/MMBR.00002-17
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).
pubmed: 28985326 pmcid: 5978021 doi: 10.1093/icb/icx090
Claesen, J. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. 12, eaay5445 (2020).
pubmed: 33208503 pmcid: 8478231 doi: 10.1126/scitranslmed.aay5445
Khan, I. et al. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front. Cell Infect. Microbiol. 11, 716299 (2021).
pubmed: 35004340 pmcid: 8733563 doi: 10.3389/fcimb.2021.716299
Shoemaker, L. & Clauset, A. Body mass evolution and diversification within horses (family Equidae). Ecol. Lett. 17, 211–220 (2014).
pubmed: 24304872 doi: 10.1111/ele.12221
Eizirik, E., Murphy, W. J. & O’Brien, S. J. Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92, 212–219 (2001).
pubmed: 11396581 doi: 10.1093/jhered/92.2.212
Hackmann, T. J. & Spain, J. N. Ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93, 1320–1334 (2010).
pubmed: 20338409 doi: 10.3168/jds.2009-2071
Heckeberg, N. S. The systematics of the Cervidae: a total evidence approach. PeerJ 8, e8114 (2020).
pubmed: 32110477 pmcid: 7034380 doi: 10.7717/peerj.8114
Lovegrove, B. G., Lobban, K. D. & Levesque, D. L. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs. Proc. Biol. Sci. 281, 20141304 (2014).
pubmed: 25339721 pmcid: 4213634
Rose K. D. The beginning of the age of mammals. (Johns Hopkins University Press, 2006).
Mackie, R. I. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 42, 319–326 (2002).
pubmed: 21708724 doi: 10.1093/icb/42.2.319
Hodkinson T. Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Ann. Plant. Rev. Online 1, 255–294 (2018).
Elliott, R., Ash, A. J., Calderon-Cortes, F., Norton, B. W. & Bauchop, T. The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J. Agric. Sci. 109, 13–17 (1987).
doi: 10.1017/S0021859600080928
Huws, S. A. et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 9, 2161 (2018).
pubmed: 30319557 pmcid: 6167468 doi: 10.3389/fmicb.2018.02161
Nolan J. V., Leng R. A., Demeyer D. I. The roles of protozoa and fungi in ruminant digestion. In Proc. International Seminar Held at the University of New England, Armidale, Australia, 26–29th September, 1988. (Penambul Books, 1989).
Saye L. M. G., et al. The anaerobic fungi: challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms 9, 694 (2021).
Calkins, S., Elledge, N. C., Hanafy, R. A., Elshahed, M. S. & Youssef, N. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. J. Microbiol. Method 127, 206–213 (2016).
doi: 10.1016/j.mimet.2016.05.019
Hooker, C. A., Hanafy, R., Hillman, E. T., Muñoz Briones, J. & Solomon, K. V. A genetic engineering toolbox for the lignocellulolytic anaerobic gut fungus Neocallimastix frontalis. ACS Synth. Biol. 12, 1034–1045 (2023).
pubmed: 36920337 doi: 10.1021/acssynbio.2c00502
Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, R721–R735 (2020).
pubmed: 32574638 doi: 10.1016/j.cub.2020.04.088
Young, D. et al. Simultaneous metabarcoding and quantification of Neocallimastigomycetes from environmental samples: Insights into community composition and novel lineages. Microorganisms 10, 1749 (2022).
pubmed: 36144352 pmcid: 9504928 doi: 10.3390/microorganisms10091749
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol 75, 7537–7541 (2009).
pubmed: 19801464 pmcid: 2786419 doi: 10.1128/AEM.01541-09
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610 pmcid: 3516142 doi: 10.1093/bioinformatics/bts565
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
pubmed: 34320186 pmcid: 8476166 doi: 10.1093/molbev/msab199
Hanafy R. A., et al. Phylogenomic analysis of the Neocallimastigomycota: Proposal of Caecomycetaceae fam. nov., Piromycetaceae fam. nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae. Int. J. Syst. Evol. Microbiol. 73, 1466–5034 (2023).
Wilken, S. E. et al. Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. mSystems 16, e00002–e00021 (2021).
Li, Y. et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front. Microbiol. 10, 435 (2019).
pubmed: 30894845 pmcid: 6414434 doi: 10.3389/fmicb.2019.00435
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
pubmed: 29718447 pmcid: 6101584 doi: 10.1093/sysbio/syy032
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
pubmed: 29942656 pmcid: 6007674 doi: 10.1093/ve/vey016
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
pubmed: 26585406 doi: 10.1016/j.jmb.2015.11.006
Boothby, T. C. et al. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc. Natl Acad. Sci. USA 112, 15976–15981 (2015).
pubmed: 26598659 pmcid: 4702960 doi: 10.1073/pnas.1510461112
Koutsovoulos, G. et al. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc. Natl Acad. Sci. USA 113, 5053–5058 (2016).
pubmed: 27035985 pmcid: 4983863 doi: 10.1073/pnas.1600338113
Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucl. Acids Res. 50, W228–W234 (2022).
pubmed: 35489069 pmcid: 9252801 doi: 10.1093/nar/gkac278
Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51, D384–d388 (2023).
pubmed: 36477806 doi: 10.1093/nar/gkac1096
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
pubmed: 19377485 doi: 10.1038/nmeth.1322
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Youssef N. H. Code for analyzing AGF community in tortoises [Data set]. In Anaerobic fungi in the tortoise alimentary tract illuminate early stages of host-fungal symbiosis and Neocallimastigomycota evolution. Zenodo. https://doi.org/10.5281/zenodo.10728114 (2024).

Auteurs

Carrie J Pratt (CJ)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.

Casey H Meili (CH)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.

Adrienne L Jones (AL)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.

Darian K Jackson (DK)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.

Emma E England (EE)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.

Yan Wang (Y)

Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.

Steve Hartson (S)

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.

Janet Rogers (J)

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.

Mostafa S Elshahed (MS)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.

Noha H Youssef (NH)

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA. noha@okstate.edu.

Classifications MeSH