Architecture and activation of human muscle phosphorylase kinase.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 Mar 2024
Historique:
received: 19 07 2023
accepted: 18 03 2024
medline: 29 3 2024
pubmed: 29 3 2024
entrez: 29 3 2024
Statut: epublish

Résumé

The study of phosphorylase kinase (PhK)-regulated glycogen metabolism has contributed to the fundamental understanding of protein phosphorylation; however, the molecular mechanism of PhK remains poorly understood. Here we present the high-resolution cryo-electron microscopy structures of human muscle PhK. The 1.3-megadalton PhK α

Identifiants

pubmed: 38548794
doi: 10.1038/s41467-024-47049-2
pii: 10.1038/s41467-024-47049-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2719

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32325018

Informations de copyright

© 2024. The Author(s).

Références

Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).
pubmed: 11988757 doi: 10.1038/ncb0502-e127
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
pubmed: 12471243 doi: 10.1126/science.1075762
Chen, M. J., Dixon, J. E. & Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 10, eaag1796 (2017).
pubmed: 28400531 doi: 10.1126/scisignal.aag1796
Krebs, E. G. Protein phosphorylation and cellular regulation I (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 32, 1122–1129 (1993).
doi: 10.1002/anie.199311221
Fischer, E. H. Protein phosphorylation and cellular regulation II (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 32, 1130–1137 (1993).
doi: 10.1002/anie.199311301
Venien-Bryan, C. et al. Three-dimensional structure of phosphorylase kinase at 22 Å resolution and its complex with glycogen phosphorylase b. Structure 10, 33–41 (2002).
pubmed: 11796108 doi: 10.1016/S0969-2126(01)00691-8
Vénien-Bryan, C. et al. The structure of phosphorylase kinase holoenzyme at 9.9 Å resolution and location of the catalytic subunit and the substrate glycogen phosphorylase. Structure 17, 117–127 (2009).
pubmed: 19141288 pmcid: 2639635 doi: 10.1016/j.str.2008.10.013
Cohen, P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur. J. Biochem. 34, 1–14 (1973).
pubmed: 4349654 doi: 10.1111/j.1432-1033.1973.tb02721.x
Rimmer, M. A. et al. The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange. Protein Sci. 27, 472–484 (2018).
pubmed: 29098725 doi: 10.1002/pro.3339
Rimmer, M. A., Nadeau, O. W., Artigues, A. & Carlson, G. M. Structural characterization of the catalytic γ and regulatory β subunits of phosphorylase kinase in the context of the hexadecameric enzyme complex. Protein Sci. 27, 485–497 (2018).
pubmed: 29098736 doi: 10.1002/pro.3340
Cohen, P. et al. Identification of the Ca
pubmed: 212300 doi: 10.1016/0014-5793(78)80772-8
Grand, R. J., Shenolikar, S. & Cohen, P. The amino acid sequence of the δ subunit (calmodulin) of rabbit skeletal muscle phosphorylase kinase. Eur. J. Biochem. 113, 359–367 (1981).
pubmed: 7202416 doi: 10.1111/j.1432-1033.1981.tb05074.x
Owen, D. J., Noble, M. E., Garman, E. F., Papageorgiou, A. C. & Johnson, L. N. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure 3, 467–482 (1995).
pubmed: 7663944 doi: 10.1016/S0969-2126(01)00180-0
Lowe, E. D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).
pubmed: 9362479 pmcid: 1170269 doi: 10.1093/emboj/16.22.6646
Dasgupta, M., Honeycutt, T. & Blumenthal, D. K. The gamma-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J. Biol. Chem. 264, 17156–17163 (1989).
pubmed: 2507540 doi: 10.1016/S0021-9258(18)71472-5
Harris, W. R. et al. Purification and characterization of catalytic fragments of phosphorylase kinase gamma subunit missing a calmodulin-binding domain. J. Biol. Chem. 265, 11740–11745 (1990).
pubmed: 2365696 doi: 10.1016/S0021-9258(19)38460-1
Cox, S. & Johnson, L. N. Expression of the phosphorylase kinase gamma subunit catalytic domain in Escherichia coli. Protein Eng. 5, 811–819 (1992).
pubmed: 1287663 doi: 10.1093/protein/5.8.811
Huang, C. Y., Yuan, C. J., Livanova, N. B. & Graves, D. J. Expression, purification, characterization, and deletion mutations of phosphorylase kinase gamma subunit: identification of an inhibitory domain in the gamma subunit. Mol. Cell Biochem. 127-128, 7–18 (1993).
pubmed: 7935363 doi: 10.1007/BF01076753
Krebs, E. G. et al. Purification and properties of rabbit skeletal muscle phosphorylase b kinase. Biochemistry 3, 1022–1033 (1964).
pubmed: 14220660 doi: 10.1021/bi00896a003
Meyer, W. L., Fischer, E. H. & Krebs, E. G. Activation of skeletal muscle phosphorylase b kinase by Ca. Biochemistry 3, 1033–1039 (1964).
pubmed: 14220661 doi: 10.1021/bi00896a004
Kilimann, M. W. et al. The alpha and beta subunits of phosphorylase kinase are homologous: cDNA cloning and primary structure of the beta subunit. Proc. Natl Acad. Sci. USA 85, 9381–9385 (1988).
pubmed: 3200826 pmcid: 282756 doi: 10.1073/pnas.85.24.9381
Pallen, M. J. Glucoamylase-like domains in the alpha- and beta-subunits of phosphorylase kinase. Protein Sci. 12, 1804–1807 (2003).
pubmed: 12876330 pmcid: 2323967 doi: 10.1110/ps.0371103
Carriere, C., Jonic, S., Mornon, J. P. & Callebaut, I. 3D mapping of glycogenosis-causing mutations in the large regulatory alpha subunit of phosphorylase kinase. Biochim. Biophys. Acta 1782, 664–670 (2008).
pubmed: 18950708 doi: 10.1016/j.bbadis.2008.09.011
Nadeau, O. W. et al. The glucoamylase inhibitor acarbose is a direct activator of phosphorylase kinase. Biochemistry 49, 6505–6507 (2010).
pubmed: 20604537 doi: 10.1021/bi101006j
Nadeau, O. W. et al. Structure and location of the regulatory β subunits in the (αβγδ)
pubmed: 22969083 pmcid: 3481268 doi: 10.1074/jbc.M112.412874
Heilmeyer, L. M. Jr et al. Farnesylcysteine, a constituent of the alpha and beta subunits of rabbit skeletal muscle phosphorylase kinase: localization by conversion to S-ethylcysteine and by tandem mass spectrometry. Proc. Natl Acad. Sci. USA 89, 9554–9558 (1992).
pubmed: 1409665 pmcid: 50170 doi: 10.1073/pnas.89.20.9554
Rimmer, M. A. et al. Mass spectrometric analysis of surface-exposed regions in the hexadecameric phosphorylase kinase complex. Biochemistry 54, 6887–6895 (2015).
pubmed: 26551836 doi: 10.1021/acs.biochem.5b00682
Taylor, S. S. & Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).
pubmed: 20971646 doi: 10.1016/j.tibs.2010.09.006
Swulius, M. T. & Waxham, M. N. Ca
pubmed: 18463790 pmcid: 3617042 doi: 10.1007/s00018-008-8086-2
Bhattacharyya, M., Karandur, D. & Kuriyan, J. Structural insights into the regulation of Ca
pubmed: 31653643 pmcid: 7263085 doi: 10.1101/cshperspect.a035147
Tidow, H. & Nissen, P. Structural diversity of calmodulin binding to its target sites. FEBS J. 280, 5551–5565 (2013).
pubmed: 23601118 doi: 10.1111/febs.12296
Crabb, J. W. & Heilmeyer, L. M. Jr High performance liquid chromatography purification and structural characterization of the subunits of rabbit muscle phosphorylase kinase. J. Biol. Chem. 259, 6346–6350 (1984).
pubmed: 6725254 doi: 10.1016/S0021-9258(20)82147-4
Trewhella, J., Blumenthal, D. K., Rokop, S. E. & Seeger, P. A. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochemistry 29, 9316–9324 (1990).
pubmed: 2248948 doi: 10.1021/bi00492a003
Cook, A. G., Johnson, L. N. & McDonnell, J. M. Structural characterization of Ca
pubmed: 15752366 doi: 10.1111/j.1742-4658.2005.04591.x
Jeyasingham, M. D., Artigues, A., Nadeau, O. W. & Carlson, G. M. Structural evidence for co-evolution of the regulation of contraction and energy production in skeletal muscle. J. Mol. Biol. 377, 623–629 (2008).
pubmed: 18281058 pmcid: 2293304 doi: 10.1016/j.jmb.2007.12.072
Burger, D., Cox, J. A., Fischer, E. H. & Stein, E. A. The activation of rabbit skeletal muscle phosphorylase kinase requires the binding of 3 Ca
pubmed: 7092874 doi: 10.1016/0006-291X(82)91481-4
Cheng, A., Fitzgerald, T. J. & Carlson, G. M. Adenosine 5’-diphosphate as an allosteric effector of phosphorylase kinase from rabbit skeletal muscle. J. Biol. Chem. 260, 2535–2542 (1985).
pubmed: 3972796 doi: 10.1016/S0021-9258(18)89585-0
Green, A. A., Cori, G. T. & Oncley, J. L. Crystalline muscle phosphorylase I. Preparation, properties, and molecular weight. J. Biol. Chem. 151, 21–29 (1943).
doi: 10.1016/S0021-9258(18)72110-8
Cori, G. T. & Green, A. A. Crystalline muscle phosphorylase II. Prosthetic group. J. Biol. Chem. 151, 31–38 (1943).
doi: 10.1016/S0021-9258(18)72111-X
Cori, G. T. & Cori, C. F. The enzymatic conversion of phosphorylase a to b. J. Biol. Chem. 158, 321–332 (1945).
doi: 10.1016/S0021-9258(18)43139-0
Fischer, E. H. & Krebs, E. G. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J. Biol. Chem. 216, 121–132 (1955).
pubmed: 13252012 doi: 10.1016/S0021-9258(19)52289-X
Heilmeyer, L. M. Jr Molecular basis of signal integration in phosphorylase kinase. Biochim. Biophys. Acta 1094, 168–174 (1991).
pubmed: 1892899 doi: 10.1016/0167-4889(91)90005-I
Cox, A. D. & Der, C. J. Protein prenylation: more than just glue? Curr. Opin. Cell Biol. 4, 1008–1016 (1992).
pubmed: 1485954 doi: 10.1016/0955-0674(92)90133-W
Goldberg, J., Nairn, A. C. & Kuriyan, J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996).
pubmed: 8601311 doi: 10.1016/S0092-8674(00)81066-1
Chao, L. H. et al. A mechanism for tunable autoinhibition in the structure of a human Ca
pubmed: 21884935 pmcid: 3184253 doi: 10.1016/j.cell.2011.07.038
Hoeflich, K. P. & Ikura, M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739–742 (2002).
pubmed: 11955428 doi: 10.1016/S0092-8674(02)00682-7
Yamniuk, A. P. & Vogel, H. J. Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 27, 33–57 (2004).
pubmed: 15122046 doi: 10.1385/MB:27:1:33
Meador, W. E., Means, A. R. & Quiocho, F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262, 1718–1721 (1993).
pubmed: 8259515 doi: 10.1126/science.8259515
Meador, W. E., Means, A. R. & Quiocho, F. A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).
pubmed: 1519061 doi: 10.1126/science.1519061
Piserchio, A. et al. Structural basis for the calmodulin-mediated activation of eukaryotic elongation factor 2 kinase. Sci. Adv. 8, eabo2039 (2022).
pubmed: 35857468 pmcid: 9258954 doi: 10.1126/sciadv.abo2039
Piserchio, A. et al. ADP enhances the allosteric activation of eukaryotic elongation factor 2 kinase by calmodulin. Proc. Natl Acad. Sci. USA 120, e2300902120 (2023).
pubmed: 37068230 pmcid: 10151598 doi: 10.1073/pnas.2300902120
Cui, J. et al. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. Elife 6, e23990 (2017).
pubmed: 28432788 pmcid: 5413348 doi: 10.7554/eLife.23990
DeLange, R. J., Kemp, R. G., Riley, W. D., Cooper, R. A. & Krebs, E. G. Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3’,5’-monophosphate. J. Biol. Chem. 243, 2200–2208 (1968).
pubmed: 4296832 doi: 10.1016/S0021-9258(18)93463-0
Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3’,5’-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3765 (1968).
pubmed: 4298072 doi: 10.1016/S0021-9258(19)34204-8
Hallenbeck, P. C. & Walsh, D. A. Autophosphorylation of phosphorylase kinase. Divalent metal cation and nucleotide dependency. J. Biol. Chem. 258, 13493–13501 (1983).
pubmed: 6643437 doi: 10.1016/S0021-9258(17)43940-8
Ingebritsen, T. S. & Cohen, P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur. J. Biochem. 132, 255–261 (1983).
pubmed: 6301824 doi: 10.1111/j.1432-1033.1983.tb07357.x
Ramachandran, C., Goris, J., Waelkens, E., Merlevede, W. & Walsh, D. A. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J. Biol. Chem. 262, 3210–3218 (1987).
pubmed: 3029103 doi: 10.1016/S0021-9258(18)61493-0
Keinan, O. et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature 599, 296–301 (2021).
pubmed: 34707293 pmcid: 9186421 doi: 10.1038/s41586-021-04019-8
Ma, J. et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat. Commun. 11, 1769 (2020).
pubmed: 32286295 pmcid: 7156451 doi: 10.1038/s41467-020-15636-8
Liu, Q. et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559–5576 e19 (2021).
pubmed: 34678143 doi: 10.1016/j.cell.2021.10.001
Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).
pubmed: 17311810 pmcid: 1874614 doi: 10.1093/nar/gkm067
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
pubmed: 34267316 pmcid: 8282847 doi: 10.1038/s42003-021-02399-1
Pettersen, E. F. et al. UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).
pubmed: 34293799 pmcid: 8387240 doi: 10.1038/s41586-021-03828-1
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943

Auteurs

Xiaoke Yang (X)

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.

Mingqi Zhu (M)

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.

Xue Lu (X)

Changping Laboratory, Beijing, P.R. China.
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China.

Yuxin Wang (Y)

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.

Junyu Xiao (J)

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China. junyuxiao@pku.edu.cn.
Changping Laboratory, Beijing, P.R. China. junyuxiao@pku.edu.cn.
Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China. junyuxiao@pku.edu.cn.

Classifications MeSH