Architecture and activation of human muscle phosphorylase kinase.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 Mar 2024
28 Mar 2024
Historique:
received:
19
07
2023
accepted:
18
03
2024
medline:
29
3
2024
pubmed:
29
3
2024
entrez:
29
3
2024
Statut:
epublish
Résumé
The study of phosphorylase kinase (PhK)-regulated glycogen metabolism has contributed to the fundamental understanding of protein phosphorylation; however, the molecular mechanism of PhK remains poorly understood. Here we present the high-resolution cryo-electron microscopy structures of human muscle PhK. The 1.3-megadalton PhK α
Identifiants
pubmed: 38548794
doi: 10.1038/s41467-024-47049-2
pii: 10.1038/s41467-024-47049-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2719Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32325018
Informations de copyright
© 2024. The Author(s).
Références
Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).
pubmed: 11988757
doi: 10.1038/ncb0502-e127
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
pubmed: 12471243
doi: 10.1126/science.1075762
Chen, M. J., Dixon, J. E. & Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 10, eaag1796 (2017).
pubmed: 28400531
doi: 10.1126/scisignal.aag1796
Krebs, E. G. Protein phosphorylation and cellular regulation I (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 32, 1122–1129 (1993).
doi: 10.1002/anie.199311221
Fischer, E. H. Protein phosphorylation and cellular regulation II (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 32, 1130–1137 (1993).
doi: 10.1002/anie.199311301
Venien-Bryan, C. et al. Three-dimensional structure of phosphorylase kinase at 22 Å resolution and its complex with glycogen phosphorylase b. Structure 10, 33–41 (2002).
pubmed: 11796108
doi: 10.1016/S0969-2126(01)00691-8
Vénien-Bryan, C. et al. The structure of phosphorylase kinase holoenzyme at 9.9 Å resolution and location of the catalytic subunit and the substrate glycogen phosphorylase. Structure 17, 117–127 (2009).
pubmed: 19141288
pmcid: 2639635
doi: 10.1016/j.str.2008.10.013
Cohen, P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur. J. Biochem. 34, 1–14 (1973).
pubmed: 4349654
doi: 10.1111/j.1432-1033.1973.tb02721.x
Rimmer, M. A. et al. The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange. Protein Sci. 27, 472–484 (2018).
pubmed: 29098725
doi: 10.1002/pro.3339
Rimmer, M. A., Nadeau, O. W., Artigues, A. & Carlson, G. M. Structural characterization of the catalytic γ and regulatory β subunits of phosphorylase kinase in the context of the hexadecameric enzyme complex. Protein Sci. 27, 485–497 (2018).
pubmed: 29098736
doi: 10.1002/pro.3340
Cohen, P. et al. Identification of the Ca
pubmed: 212300
doi: 10.1016/0014-5793(78)80772-8
Grand, R. J., Shenolikar, S. & Cohen, P. The amino acid sequence of the δ subunit (calmodulin) of rabbit skeletal muscle phosphorylase kinase. Eur. J. Biochem. 113, 359–367 (1981).
pubmed: 7202416
doi: 10.1111/j.1432-1033.1981.tb05074.x
Owen, D. J., Noble, M. E., Garman, E. F., Papageorgiou, A. C. & Johnson, L. N. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure 3, 467–482 (1995).
pubmed: 7663944
doi: 10.1016/S0969-2126(01)00180-0
Lowe, E. D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).
pubmed: 9362479
pmcid: 1170269
doi: 10.1093/emboj/16.22.6646
Dasgupta, M., Honeycutt, T. & Blumenthal, D. K. The gamma-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J. Biol. Chem. 264, 17156–17163 (1989).
pubmed: 2507540
doi: 10.1016/S0021-9258(18)71472-5
Harris, W. R. et al. Purification and characterization of catalytic fragments of phosphorylase kinase gamma subunit missing a calmodulin-binding domain. J. Biol. Chem. 265, 11740–11745 (1990).
pubmed: 2365696
doi: 10.1016/S0021-9258(19)38460-1
Cox, S. & Johnson, L. N. Expression of the phosphorylase kinase gamma subunit catalytic domain in Escherichia coli. Protein Eng. 5, 811–819 (1992).
pubmed: 1287663
doi: 10.1093/protein/5.8.811
Huang, C. Y., Yuan, C. J., Livanova, N. B. & Graves, D. J. Expression, purification, characterization, and deletion mutations of phosphorylase kinase gamma subunit: identification of an inhibitory domain in the gamma subunit. Mol. Cell Biochem. 127-128, 7–18 (1993).
pubmed: 7935363
doi: 10.1007/BF01076753
Krebs, E. G. et al. Purification and properties of rabbit skeletal muscle phosphorylase b kinase. Biochemistry 3, 1022–1033 (1964).
pubmed: 14220660
doi: 10.1021/bi00896a003
Meyer, W. L., Fischer, E. H. & Krebs, E. G. Activation of skeletal muscle phosphorylase b kinase by Ca. Biochemistry 3, 1033–1039 (1964).
pubmed: 14220661
doi: 10.1021/bi00896a004
Kilimann, M. W. et al. The alpha and beta subunits of phosphorylase kinase are homologous: cDNA cloning and primary structure of the beta subunit. Proc. Natl Acad. Sci. USA 85, 9381–9385 (1988).
pubmed: 3200826
pmcid: 282756
doi: 10.1073/pnas.85.24.9381
Pallen, M. J. Glucoamylase-like domains in the alpha- and beta-subunits of phosphorylase kinase. Protein Sci. 12, 1804–1807 (2003).
pubmed: 12876330
pmcid: 2323967
doi: 10.1110/ps.0371103
Carriere, C., Jonic, S., Mornon, J. P. & Callebaut, I. 3D mapping of glycogenosis-causing mutations in the large regulatory alpha subunit of phosphorylase kinase. Biochim. Biophys. Acta 1782, 664–670 (2008).
pubmed: 18950708
doi: 10.1016/j.bbadis.2008.09.011
Nadeau, O. W. et al. The glucoamylase inhibitor acarbose is a direct activator of phosphorylase kinase. Biochemistry 49, 6505–6507 (2010).
pubmed: 20604537
doi: 10.1021/bi101006j
Nadeau, O. W. et al. Structure and location of the regulatory β subunits in the (αβγδ)
pubmed: 22969083
pmcid: 3481268
doi: 10.1074/jbc.M112.412874
Heilmeyer, L. M. Jr et al. Farnesylcysteine, a constituent of the alpha and beta subunits of rabbit skeletal muscle phosphorylase kinase: localization by conversion to S-ethylcysteine and by tandem mass spectrometry. Proc. Natl Acad. Sci. USA 89, 9554–9558 (1992).
pubmed: 1409665
pmcid: 50170
doi: 10.1073/pnas.89.20.9554
Rimmer, M. A. et al. Mass spectrometric analysis of surface-exposed regions in the hexadecameric phosphorylase kinase complex. Biochemistry 54, 6887–6895 (2015).
pubmed: 26551836
doi: 10.1021/acs.biochem.5b00682
Taylor, S. S. & Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).
pubmed: 20971646
doi: 10.1016/j.tibs.2010.09.006
Swulius, M. T. & Waxham, M. N. Ca
pubmed: 18463790
pmcid: 3617042
doi: 10.1007/s00018-008-8086-2
Bhattacharyya, M., Karandur, D. & Kuriyan, J. Structural insights into the regulation of Ca
pubmed: 31653643
pmcid: 7263085
doi: 10.1101/cshperspect.a035147
Tidow, H. & Nissen, P. Structural diversity of calmodulin binding to its target sites. FEBS J. 280, 5551–5565 (2013).
pubmed: 23601118
doi: 10.1111/febs.12296
Crabb, J. W. & Heilmeyer, L. M. Jr High performance liquid chromatography purification and structural characterization of the subunits of rabbit muscle phosphorylase kinase. J. Biol. Chem. 259, 6346–6350 (1984).
pubmed: 6725254
doi: 10.1016/S0021-9258(20)82147-4
Trewhella, J., Blumenthal, D. K., Rokop, S. E. & Seeger, P. A. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochemistry 29, 9316–9324 (1990).
pubmed: 2248948
doi: 10.1021/bi00492a003
Cook, A. G., Johnson, L. N. & McDonnell, J. M. Structural characterization of Ca
pubmed: 15752366
doi: 10.1111/j.1742-4658.2005.04591.x
Jeyasingham, M. D., Artigues, A., Nadeau, O. W. & Carlson, G. M. Structural evidence for co-evolution of the regulation of contraction and energy production in skeletal muscle. J. Mol. Biol. 377, 623–629 (2008).
pubmed: 18281058
pmcid: 2293304
doi: 10.1016/j.jmb.2007.12.072
Burger, D., Cox, J. A., Fischer, E. H. & Stein, E. A. The activation of rabbit skeletal muscle phosphorylase kinase requires the binding of 3 Ca
pubmed: 7092874
doi: 10.1016/0006-291X(82)91481-4
Cheng, A., Fitzgerald, T. J. & Carlson, G. M. Adenosine 5’-diphosphate as an allosteric effector of phosphorylase kinase from rabbit skeletal muscle. J. Biol. Chem. 260, 2535–2542 (1985).
pubmed: 3972796
doi: 10.1016/S0021-9258(18)89585-0
Green, A. A., Cori, G. T. & Oncley, J. L. Crystalline muscle phosphorylase I. Preparation, properties, and molecular weight. J. Biol. Chem. 151, 21–29 (1943).
doi: 10.1016/S0021-9258(18)72110-8
Cori, G. T. & Green, A. A. Crystalline muscle phosphorylase II. Prosthetic group. J. Biol. Chem. 151, 31–38 (1943).
doi: 10.1016/S0021-9258(18)72111-X
Cori, G. T. & Cori, C. F. The enzymatic conversion of phosphorylase a to b. J. Biol. Chem. 158, 321–332 (1945).
doi: 10.1016/S0021-9258(18)43139-0
Fischer, E. H. & Krebs, E. G. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J. Biol. Chem. 216, 121–132 (1955).
pubmed: 13252012
doi: 10.1016/S0021-9258(19)52289-X
Heilmeyer, L. M. Jr Molecular basis of signal integration in phosphorylase kinase. Biochim. Biophys. Acta 1094, 168–174 (1991).
pubmed: 1892899
doi: 10.1016/0167-4889(91)90005-I
Cox, A. D. & Der, C. J. Protein prenylation: more than just glue? Curr. Opin. Cell Biol. 4, 1008–1016 (1992).
pubmed: 1485954
doi: 10.1016/0955-0674(92)90133-W
Goldberg, J., Nairn, A. C. & Kuriyan, J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996).
pubmed: 8601311
doi: 10.1016/S0092-8674(00)81066-1
Chao, L. H. et al. A mechanism for tunable autoinhibition in the structure of a human Ca
pubmed: 21884935
pmcid: 3184253
doi: 10.1016/j.cell.2011.07.038
Hoeflich, K. P. & Ikura, M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739–742 (2002).
pubmed: 11955428
doi: 10.1016/S0092-8674(02)00682-7
Yamniuk, A. P. & Vogel, H. J. Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 27, 33–57 (2004).
pubmed: 15122046
doi: 10.1385/MB:27:1:33
Meador, W. E., Means, A. R. & Quiocho, F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262, 1718–1721 (1993).
pubmed: 8259515
doi: 10.1126/science.8259515
Meador, W. E., Means, A. R. & Quiocho, F. A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).
pubmed: 1519061
doi: 10.1126/science.1519061
Piserchio, A. et al. Structural basis for the calmodulin-mediated activation of eukaryotic elongation factor 2 kinase. Sci. Adv. 8, eabo2039 (2022).
pubmed: 35857468
pmcid: 9258954
doi: 10.1126/sciadv.abo2039
Piserchio, A. et al. ADP enhances the allosteric activation of eukaryotic elongation factor 2 kinase by calmodulin. Proc. Natl Acad. Sci. USA 120, e2300902120 (2023).
pubmed: 37068230
pmcid: 10151598
doi: 10.1073/pnas.2300902120
Cui, J. et al. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. Elife 6, e23990 (2017).
pubmed: 28432788
pmcid: 5413348
doi: 10.7554/eLife.23990
DeLange, R. J., Kemp, R. G., Riley, W. D., Cooper, R. A. & Krebs, E. G. Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3’,5’-monophosphate. J. Biol. Chem. 243, 2200–2208 (1968).
pubmed: 4296832
doi: 10.1016/S0021-9258(18)93463-0
Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3’,5’-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3765 (1968).
pubmed: 4298072
doi: 10.1016/S0021-9258(19)34204-8
Hallenbeck, P. C. & Walsh, D. A. Autophosphorylation of phosphorylase kinase. Divalent metal cation and nucleotide dependency. J. Biol. Chem. 258, 13493–13501 (1983).
pubmed: 6643437
doi: 10.1016/S0021-9258(17)43940-8
Ingebritsen, T. S. & Cohen, P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur. J. Biochem. 132, 255–261 (1983).
pubmed: 6301824
doi: 10.1111/j.1432-1033.1983.tb07357.x
Ramachandran, C., Goris, J., Waelkens, E., Merlevede, W. & Walsh, D. A. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J. Biol. Chem. 262, 3210–3218 (1987).
pubmed: 3029103
doi: 10.1016/S0021-9258(18)61493-0
Keinan, O. et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature 599, 296–301 (2021).
pubmed: 34707293
pmcid: 9186421
doi: 10.1038/s41586-021-04019-8
Ma, J. et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat. Commun. 11, 1769 (2020).
pubmed: 32286295
pmcid: 7156451
doi: 10.1038/s41467-020-15636-8
Liu, Q. et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559–5576 e19 (2021).
pubmed: 34678143
doi: 10.1016/j.cell.2021.10.001
Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).
pubmed: 17311810
pmcid: 1874614
doi: 10.1093/nar/gkm067
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
pubmed: 34267316
pmcid: 8282847
doi: 10.1038/s42003-021-02399-1
Pettersen, E. F. et al. UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).
pubmed: 34293799
pmcid: 8387240
doi: 10.1038/s41586-021-03828-1
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943