High OXPHOS efficiency in RA-FUdr-differentiated SH-SY5Y cells: involvement of cAMP signalling and respiratory supercomplexes.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 Mar 2024
Historique:
received: 12 12 2023
accepted: 20 03 2024
medline: 29 3 2024
pubmed: 29 3 2024
entrez: 29 3 2024
Statut: epublish

Résumé

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.

Identifiants

pubmed: 38548913
doi: 10.1038/s41598-024-57613-x
pii: 10.1038/s41598-024-57613-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7411

Informations de copyright

© 2024. The Author(s).

Références

Agostini, M. et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 23, 1502–1514 (2016).
pubmed: 27058317 pmcid: 5072427 doi: 10.1038/cdd.2016.36
Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. ELife 5, e13374 (2016).
pubmed: 27282387 pmcid: 4963198 doi: 10.7554/eLife.13374
Yang, S., Park, J. H. & Lu, H.-C. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol. Neurodegener. 18, 49 (2023).
pubmed: 37475056 pmcid: 10357692 doi: 10.1186/s13024-023-00634-3
Lees, J. G., Gardner, D. K. & Harvey, A. J. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Dev. Camb. Engl. 145, 168997 (2018).
Li, D., Ding, Z., Gui, M., Hou, Y. & Xie, K. Metabolic enhancement of glycolysis and mitochondrial respiration are essential for neuronal differentiation. Cell. Reprogramm. 22, 291–299 (2020).
doi: 10.1089/cell.2020.0034
Lendahl, U. & McKay, R. D. The use of cell lines in neurobiology. Trends Neurosci. 13, 132–137 (1990).
pubmed: 1692169 doi: 10.1016/0166-2236(90)90004-T
Dräger, N. M. et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 25, 1149–1162 (2022).
pubmed: 35953545 pmcid: 9448678 doi: 10.1038/s41593-022-01131-4
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).
pubmed: 18029452 doi: 10.1126/science.1151526
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
pubmed: 16904174 doi: 10.1016/j.cell.2006.07.024
Chandrasekaran, A. et al. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Res. 25, 139–151 (2017).
pubmed: 29128818 doi: 10.1016/j.scr.2017.10.010
Li, Z.-F. et al. A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson’s disease. Dis. Model. Mech. 15, 049125 (2022).
doi: 10.1242/dmm.049125
Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L. & Ross, R. A. Phenotypic diversification in human neuroblastoma cells: Expression of distinct neural crest lineages. Cancer Res. 49, 219–225 (1989).
pubmed: 2535691
Bell, M. & Zempel, H. SH-SY5Y-derived neurons: A human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Rev. Neurosci. 33, 1–15 (2022).
pubmed: 33866701 doi: 10.1515/revneuro-2020-0152
Yusuf, M., Leung, K., Morris, K. J. & Volpi, E. V. Comprehensive cytogenomic profile of the in vitro neuronal model SH-SY5Y. Neurogenetics 14, 63–70 (2013).
pubmed: 23224213 doi: 10.1007/s10048-012-0350-9
Martin, E.-R., Gandawijaya, J. & Oguro-Ando, A. A novel method for generating glutamatergic SH-SY5Y neuron-like cells utilizing B-27 supplement. Front. Pharmacol. 13, 943627 (2022).
pubmed: 36339621 pmcid: 9630362 doi: 10.3389/fphar.2022.943627
Fang, Y. et al. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci. Rep. 4, 7074 (2014).
pubmed: 25399549 pmcid: 4233341 doi: 10.1038/srep07074
Mahamud, N. et al. Untargeted metabolomics reveal pathways associated with neuroprotective effect of oxyresveratrol in SH-SY5Y cells. Sci. Rep. 13, 20385 (2023).
pubmed: 37989867 pmcid: 10663518 doi: 10.1038/s41598-023-47558-y
D’Aloia, A. et al. A new advanced cellular model of functional cholinergic-like neurons developed by reprogramming the human SH-SY5Y neuroblastoma cell line. Cell Death Discov. 10, 1–16 (2024).
doi: 10.1038/s41420-023-01790-7
Dravid, A., Raos, B., Svirskis, D. & O’Carroll, S. J. Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci. Rep. 11, 23935 (2021).
pubmed: 34907283 pmcid: 8671469 doi: 10.1038/s41598-021-03442-1
Xicoy, H., Wieringa, B. & Martens, G. J. M. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol. Neurodegener. 12, 10 (2017).
pubmed: 28118852 pmcid: 5259880 doi: 10.1186/s13024-017-0149-0
Kovalevich, J. & Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 1078, 9–21 (2013).
pubmed: 23975817 pmcid: 5127451 doi: 10.1007/978-1-62703-640-5_2
Encinas, M. et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent. Hum. Neuron-Like Cells. J. Neurochem. 75, 991–1003 (2000).
Kalinovskii, A. P. et al. Retinoic acid-differentiated neuroblastoma SH-SY5Y Is an accessible in vitro model to study native human acid-sensing ion channels 1a (ASIC1a). Biology 11, 167 (2022).
pubmed: 35205034 pmcid: 8868828 doi: 10.3390/biology11020167
Xu, Y. et al. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J. Biol. Chem. 299, 104802 (2023).
pubmed: 37172727 pmcid: 10276297 doi: 10.1016/j.jbc.2023.104802
Hromadkova, L. et al. (2020). Brain-derived neurotrophic factor (BDNF) promotes molecular polarization and differentiation of immature neuroblastoma cells into definitive neurons. Biochim. Biophys. Acta BBA Mol. Cell Res. 1867, 118737
Magalingam, K. B., Radhakrishnan, A. K., Somanath, S. D., Md, S. & Haleagrahara, N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol. Biol. Rep. 47, 8775–8788 (2020).
pubmed: 33098048 doi: 10.1007/s11033-020-05925-2
Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).
pubmed: 8377226 doi: 10.1002/jnr.490350513
Murillo, J. R. et al. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EuPA Open Proteom. 16, 1–11 (2017).
pubmed: 29900121 pmcid: 5965715 doi: 10.1016/j.euprot.2017.06.001
Toselli, M., Tosetti, P. & Taglietti, V. Functional changes in sodium conductances in the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. https://doi.org/10.1152/jn.1996.76.6.3920 (1996).
doi: 10.1152/jn.1996.76.6.3920 pubmed: 8985889
Lopez-Suarez, L., Awabdh, S. A., Coumoul, X. & Chauvet, C. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. NeuroToxicology 92, 131–155 (2022).
pubmed: 35914637 doi: 10.1016/j.neuro.2022.07.008
Şahin, M., Öncü, G., Yılmaz, M. A., Özkan, D. & Saybaşılı, H. Transformation of SH-SY5Y cell line into neuron-like cells: Investigation of electrophysiological and biomechanical changes. Neurosci. Lett. 745, 135628 (2021).
pubmed: 33440235 doi: 10.1016/j.neulet.2021.135628
Teppola, H., Sarkanen, J.-R., Jalonen, T. O. & Linne, M.-L. Morphological differentiation towards neuronal phenotype of SH-SY5Y neuroblastoma cells by estradiol, retinoic acid and cholesterol. Neurochem. Res. 41, 731–747 (2016).
pubmed: 26518675 doi: 10.1007/s11064-015-1743-6
Encinas, M., Iglesias, M., Llecha, N. & Comella, J. X. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J. Neurochem. 73, 1409–1421 (1999).
pubmed: 10501184 doi: 10.1046/j.1471-4159.1999.0731409.x
Segal, R. A. Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26, 299–330 (2003).
pubmed: 12598680 doi: 10.1146/annurev.neuro.26.041002.131421
Constantinescu, R., Constantinescu, A. T., Reichmann, H. & Janetzky, B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J. Neural Transm. Suppl. 3, 17–28. https://doi.org/10.1007/978-3-211-73574-9_3 (2007).
doi: 10.1007/978-3-211-73574-9_3
Strother, L., Miles, G. B., Holiday, A. R., Cheng, Y. & Doherty, G. H. Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing. J. Neurosci. Methods 362, 109301 (2021).
pubmed: 34343572 pmcid: 8434422 doi: 10.1016/j.jneumeth.2021.109301
Hartmann, K.-U. & Heidelberger, C. Studies on fluorinated pyrimidines: XIII. Inhibition of thymidylate synthetase. J. Biol. Chem. 236, 3006–3013 (1961).
pubmed: 13905041 doi: 10.1016/S0021-9258(19)76419-9
Xun, Z. et al. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech. Ageing Dev. 133, 176–185 (2012).
pubmed: 22336883 pmcid: 3357086 doi: 10.1016/j.mad.2012.01.008
Schneider, L. et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic. Biol. Med. 51, 2007–2017 (2011).
pubmed: 21945098 pmcid: 3208787 doi: 10.1016/j.freeradbiomed.2011.08.030
Rumpf, S., Sanal, N. & Marzano, M. Energy metabolic pathways in neuronal development and function. Oxf. Open Neurosci. 2, 004 (2023).
doi: 10.1093/oons/kvad004
Pennington, E. R., Funai, K., Brown, D. A. & Shaikh, S. R. The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1039–1052 (2019).
pubmed: 30951877 pmcid: 6482085 doi: 10.1016/j.bbalip.2019.03.012
Ziegler, A. B. et al. Cell-autonomous control of neuronal dendrite expansion via the fatty acid synthesis regulator SREBP. Cell Rep. 21, 3346–3353 (2017).
pubmed: 29262315 doi: 10.1016/j.celrep.2017.11.069
Marcucci, H., Paoletti, L., Jackowski, S. & Banchio, C. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J. Biol. Chem. 285, 25382–25393 (2010).
pubmed: 20525991 pmcid: 2919101 doi: 10.1074/jbc.M110.139477
Beckervordersandforth, R., Häberle, B. M. & Lie, D. C. Metabolic regulation of adult stem cell-derived neurons. Front. Biol. 10, 107–116 (2015).
doi: 10.1007/s11515-015-1351-5
Wanet, A., Arnould, T., Najimi, M. & Renard, P. Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev. 24, 1957–1971 (2015).
pubmed: 26134242 pmcid: 4543487 doi: 10.1089/scd.2015.0117
Brill, L. B. & Bennett, J. P. Dependence on electron transport chain function and intracellular signaling of genomic responses in SH-SY5Y cells to the mitochondrial neurotoxin MPP(+). Exp. Neurol. 181, 25–38 (2003).
pubmed: 12710931 doi: 10.1016/S0014-4886(02)00045-6
Sparagna, G. C. et al. Linoleate-enrichment of mitochondrial cardiolipin molecular species is developmentally regulated and a determinant of metabolic phenotype. Biology 12, 32 (2022).
pubmed: 36671725 pmcid: 9855531 doi: 10.3390/biology12010032
Fajardo, V. A., Mikhaeil, J. S., Leveille, C. F., Saint, C. & LeBlanc, P. J. Cardiolipin content, linoleic acid composition, and tafazzin expression in response to skeletal muscle overload and unload stimuli. Sci. Rep. 7, 2060 (2017).
pubmed: 28515468 pmcid: 5435726 doi: 10.1038/s41598-017-02089-1
Zhang, J. & Zhang, Q. Using seahorse machine to measure OCR and ECAR in cancer cells. Methods Mol. Biol. 19287, 353–363 (2019).
doi: 10.1007/978-1-4939-9027-6_18
Mookerjee, S. A. & Brand, M. D. Measurement and analysis of extracellular acid production to determine glycolytic rate. J. Vis. Exp. JoVE https://doi.org/10.3791/53464 (2015).
doi: 10.3791/53464 pubmed: 26709455
Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 292, 7189–7207 (2017).
pubmed: 28270511 pmcid: 5409486 doi: 10.1074/jbc.M116.774471
Desousa, B. R. et al. Calculation of ATP production rates using the Seahorse XF analyzer. EMBO Rep. 24, e56380 (2023).
pubmed: 37548091 pmcid: 10561364 doi: 10.15252/embr.202256380
Pacelli, C. et al. Loss of function of the gene encoding the histone methyltransferase KMT2D leads to deregulation of mitochondrial respiration. Cells 9, 1685 (2020).
pubmed: 32668765 pmcid: 7407568 doi: 10.3390/cells9071685
Signorile, A. et al. Resveratrol treatment in human parkin-mutant fibroblasts modulates cAMP and calcium homeostasis regulating the expression of mitochondria-associated membranes resident proteins. Biomolecules 11, 1511 (2021).
pubmed: 34680144 pmcid: 8534032 doi: 10.3390/biom11101511
Tanzarella, P. et al. Increased levels of cAMP by the calcium-dependent activation of soluble adenylyl cyclase in parkin-mutant fibroblasts. Cells 8, 250 (2019).
pubmed: 30875974 pmcid: 6468892 doi: 10.3390/cells8030250
Papa, S. et al. cAMP-dependent protein kinase regulates post-translational processing and expression of complex I subunits in mammalian cells. Biochim. Biophys. Acta 1797, 649–658 (2010).
pubmed: 20303927 doi: 10.1016/j.bbabio.2010.03.013
Signorile, A. et al. cAMP/PKA signaling modulates mitochondrial supercomplex organization. Int. J. Mol. Sci. 23, 9655 (2022).
pubmed: 36077053 pmcid: 9455794 doi: 10.3390/ijms23179655
Cheung, Y.-T. et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30, 127–135 (2009).
pubmed: 19056420 doi: 10.1016/j.neuro.2008.11.001
Clagett-Dame, M., McNeill, E. M. & Muley, P. D. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J. Neurobiol. 66, 739–756 (2006).
pubmed: 16688769 doi: 10.1002/neu.20241
Uemura, K. et al. Presenilin 1 mediates retinoic acid-induced differentiation of SH-SY5Y cells through facilitation of Wnt signaling. J. Neurosci. Res. 73, 166–175 (2003).
pubmed: 12836159 doi: 10.1002/jnr.10641
Lopes, F. M. et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res. 1337, 85–94 (2010).
pubmed: 20380819 doi: 10.1016/j.brainres.2010.03.102
Sarkanen, J.-R. et al. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J. Neurochem. 102, 1941–1952 (2007).
pubmed: 17540009 doi: 10.1111/j.1471-4159.2007.04676.x
Scott, I. G., Akerman, K. E., Heikkilä, J. E., Kaila, K. & Andersson, L. C. Development of a neural phenotype in differentiating ganglion cell-derived human neuroblastoma cells. J. Cell. Physiol. 128, 285–292 (1986).
pubmed: 3090056 doi: 10.1002/jcp.1041280221
Tracey, T. J., Steyn, F. J., Wolvetang, E. J. & Ngo, S. T. Neuronal lipid metabolism: Multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10 (2018).
pubmed: 29410613 pmcid: 5787076 doi: 10.3389/fnmol.2018.00010
Braverman, N. E. & Moser, A. B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822, 1442–1452 (2012).
pubmed: 22627108 doi: 10.1016/j.bbadis.2012.05.008
Yamashita, S., Kanno, S., Nakagawa, K., Kinoshita, M. & Miyazawa, T. Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: Importance of plasmalogen molecular species. RSC Adv. 5, 61012–61020 (2015).
doi: 10.1039/C5RA00632E
Jakubec, M., Bariås, E., Kryuchkov, F., Hjørnevik, L. V. & Halskau, Ø. Fast and quantitative phospholipidomic analysis of SH-SY5Y neuroblastoma cell cultures using liquid chromatography-tandem mass spectrometry and 31P nuclear magnetic resonance. ACS Omega 4, 21596–21603 (2019).
pubmed: 31867556 pmcid: 6921604 doi: 10.1021/acsomega.9b03463
Oemer, G. et al. Phospholipid acyl chain diversity controls the tissue-specific assembly of mitochondrial cardiolipins. Cell Rep. 30, 4281-4291.e4 (2020).
pubmed: 32209484 doi: 10.1016/j.celrep.2020.02.115
Schlame, M. & Greenberg, M. L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 3–7 (2017).
pubmed: 27556952 doi: 10.1016/j.bbalip.2016.08.010
Falabella, M., Vernon, H. J., Hanna, M. G., Claypool, S. M. & Pitceathly, R. D. S. Cardiolipin, mitochondria, and neurological disease. Trends Endocrinol. Metab. TEM 32, 224–237 (2021).
pubmed: 33640250 doi: 10.1016/j.tem.2021.01.006
Yang, Y., Cao, J. & Shi, Y. Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase. J. Biol. Chem. 279, 55866–55874 (2004).
pubmed: 15485873 doi: 10.1074/jbc.M406710200
Pandey, A. et al. Studies on regulation of global protein profile and cellular bioenergetics of differentiating SH-SY5Y cells. Mol. Neurobiol. 59, 1799–1818 (2022).
pubmed: 35025051 doi: 10.1007/s12035-021-02667-5
Esteban-Martínez, L. & Boya, P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming. Autophagy 14, 915–917 (2018).
pubmed: 28614042 pmcid: 6070009 doi: 10.1080/15548627.2017.1332567
Maffezzini, C., Calvo-Garrido, J., Wredenberg, A. & Freyer, C. Metabolic regulation of neurodifferentiation in the adult brain. Cell. Mol. Life Sci. CMLS 77, 2483–2496 (2020).
pubmed: 31912194 doi: 10.1007/s00018-019-03430-9
Iwata, R. & Vanderhaeghen, P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr. Opin. Neurobiol. 69, 231–240 (2021).
pubmed: 34171617 pmcid: 8415079 doi: 10.1016/j.conb.2021.05.003
Cheng, X.-T., Huang, N. & Sheng, Z.-H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110, 1899–1923 (2022).
pubmed: 35429433 pmcid: 9233091 doi: 10.1016/j.neuron.2022.03.015
Sansbury, B. E., Jones, S. P., Riggs, D. W., Darley-Usmar, V. M. & Hill, B. G. Bioenergetic function in cardiovascular cells: The importance of the reserve capacity and its biological regulation. Chem. Biol. Interact. 191, 288–295 (2011).
pubmed: 21147079 doi: 10.1016/j.cbi.2010.12.002
Dranka, B. P., Hill, B. G. & Darley-Usmar, V. M. Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 48, 905–914 (2010).
pubmed: 20093177 pmcid: 2860730 doi: 10.1016/j.freeradbiomed.2010.01.015
Hill, B. G., Dranka, B. P., Zou, L., Chatham, J. C. & Darley-Usmar, V. M. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem. J. 424, 99–107 (2009).
pubmed: 19740075 doi: 10.1042/BJ20090934
Khacho, M., Harris, R. & Slack, R. S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 20, 34–48 (2019).
pubmed: 30464208 doi: 10.1038/s41583-018-0091-3
Varum, S. et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 6, e20914 (2011).
pubmed: 21698063 pmcid: 3117868 doi: 10.1371/journal.pone.0020914
Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512 (2012).
pubmed: 23092819 pmcid: 3594552 doi: 10.1515/hsz-2012-0198
Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).
pubmed: 24529383 pmcid: 3955179 doi: 10.1016/j.cell.2013.12.042
Beckervordersandforth, R. et al. Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560-573.e6 (2017).
pubmed: 28111078 pmcid: 5300896 doi: 10.1016/j.neuron.2016.12.017
López-Doménech, G. & Kittler, J. T. Mitochondrial regulation of local supply of energy in neurons. Curr. Opin. Neurobiol. 81, 102747 (2023).
pubmed: 37392672 doi: 10.1016/j.conb.2023.102747
Camandola, S. & Mattson, M. P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 36, 1474–1492 (2017).
pubmed: 28438892 pmcid: 5452017 doi: 10.15252/embj.201695810
Manganelli, V. et al. Overexpression of neuroglobin promotes energy metabolism and autophagy induction in human neuroblastoma SH-SY5Y cells. Cells 10, 3394 (2021).
pubmed: 34943907 pmcid: 8699457 doi: 10.3390/cells10123394
Yamamoto, H. et al. Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line. Oxid. Med. Cell. Longev. 2016, 1735841 (2016).
pubmed: 27340504 pmcid: 4909908 doi: 10.1155/2016/1735841
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).
pubmed: 10412986 doi: 10.1016/S0092-8674(00)80611-X
Piccinin, E. et al. PGC-1s in the spotlight with Parkinson’s disease. Int. J. Mol. Sci. 22, 3487 (2021).
pubmed: 33800548 pmcid: 8036867 doi: 10.3390/ijms22073487
Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).
pubmed: 23416000 pmcid: 3708305 doi: 10.1016/j.ccr.2012.11.020
O’Brien, L. C., Keeney, P. M. & Bennett, J. P. Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. Stem Cells Dev. 24, 1984–1994 (2015).
pubmed: 25892363 pmcid: 4545371 doi: 10.1089/scd.2015.0076
Zaccagnino, P. et al. An active mitochondrial biogenesis occurs during dendritic cell differentiation. Int. J. Biochem. Cell Biol. 44, 1962–1969 (2012).
pubmed: 22871569 doi: 10.1016/j.biocel.2012.07.024
Chen, C.-T., Shih, Y.-R.V., Kuo, T. K., Lee, O. K. & Wei, Y.-H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells Dayt. Ohio 26, 960–968 (2008).
doi: 10.1634/stemcells.2007-0509
De Rasmo, D. et al. cAMP regulates the functional activity, coupling efficiency and structural organization of mammalian FOF1 ATP synthase. Biochim. Biophys. Acta 1857, 350–358 (2016).
pubmed: 26775111 doi: 10.1016/j.bbabio.2016.01.006
De Rasmo, D. et al. The β-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. Eur. J. Pharmacol. 652, 15–22 (2011).
pubmed: 21118678 doi: 10.1016/j.ejphar.2010.11.016
Frey, U., Huang, Y. Y. & Kandel, E. R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664 (1993).
pubmed: 8389057 doi: 10.1126/science.8389057
Sánchez, S. et al. A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem. Int. 44, 231–242 (2004).
pubmed: 14602086 doi: 10.1016/S0197-0186(03)00150-5
Kume, T. et al. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype. Neurosci. Lett. 443, 199–203 (2008).
pubmed: 18691633 doi: 10.1016/j.neulet.2008.07.079
Berndtsson, J. et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Rep. 21, e51015 (2020).
pubmed: 33016568 pmcid: 7726804 doi: 10.15252/embr.202051015
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
pubmed: 23812712 doi: 10.1126/science.1230381
Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).
pubmed: 27916530 doi: 10.1016/j.cmet.2016.11.004
Scrima, R. et al. Mitochondrial sAC-cAMP-PKA axis modulates the ΔΨm-dependent control coefficients of the respiratory chain complexes: Evidence of respirasome plasticity. Int. J. Mol. Sci. 24, 15144 (2023).
pubmed: 37894823 pmcid: 10607245 doi: 10.3390/ijms242015144
Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. USA 113, 13063–13068 (2016).
pubmed: 27799543 pmcid: 5135366 doi: 10.1073/pnas.1613701113
Hofmann, A. D. et al. OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS ONE 7, e35160 (2012).
pubmed: 22523573 pmcid: 3327658 doi: 10.1371/journal.pone.0035160
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
pubmed: 13671378 doi: 10.1139/y59-099
Lobasso, S. et al. Lipid profiling of parkin-mutant human skin fibroblasts. J. Cell. Physiol. 232, 3540–3551 (2017).
pubmed: 28109117 doi: 10.1002/jcp.25815
Lobasso, S. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front. Physiol. 12, 748895 (2021).
pubmed: 34867454 pmcid: 8637280 doi: 10.3389/fphys.2021.748895
Signorile, A. et al. Human ovarian cancer tissue exhibits increase of mitochondrial biogenesis and cristae remodeling. Cancers 11, 1350 (2019).
pubmed: 31547300 pmcid: 6770021 doi: 10.3390/cancers11091350
Schägger, H., Link, T. A., Engel, W. D. & von Jagow, G. Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol. 126, 224–237 (1986).
pubmed: 2856130 doi: 10.1016/S0076-6879(86)26024-3

Auteurs

Maria Laura Matrella (ML)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.

Alessio Valletti (A)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.
MASMEC Biomed S.p.A, 70026, Modugno, Italy.

Isabella Gigante (I)

National Institute of Gastroenterology- IRCCS "Saverio De Bellis", Via Turi 27, Castellana Grotte, 70013, Bari, Italy.

Domenico De Rasmo (D)

Bioenergetics and Molecular Biotechnologies, CNR-Institute of Biomembranes, 70124, Bari, Italy.

Anna Signorile (A)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.

Silvia Russo (S)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.

Simona Lobasso (S)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.

Donatella Lobraico (D)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.

Michele Dibattista (M)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.

Consiglia Pacelli (C)

Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy. consiglia.pacelli@unifg.it.

Tiziana Cocco (T)

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy. tizianamaria.cocco@uniba.it.

Classifications MeSH