High OXPHOS efficiency in RA-FUdr-differentiated SH-SY5Y cells: involvement of cAMP signalling and respiratory supercomplexes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Mar 2024
28 Mar 2024
Historique:
received:
12
12
2023
accepted:
20
03
2024
medline:
29
3
2024
pubmed:
29
3
2024
entrez:
29
3
2024
Statut:
epublish
Résumé
Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.
Identifiants
pubmed: 38548913
doi: 10.1038/s41598-024-57613-x
pii: 10.1038/s41598-024-57613-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7411Informations de copyright
© 2024. The Author(s).
Références
Agostini, M. et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 23, 1502–1514 (2016).
pubmed: 27058317
pmcid: 5072427
doi: 10.1038/cdd.2016.36
Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. ELife 5, e13374 (2016).
pubmed: 27282387
pmcid: 4963198
doi: 10.7554/eLife.13374
Yang, S., Park, J. H. & Lu, H.-C. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol. Neurodegener. 18, 49 (2023).
pubmed: 37475056
pmcid: 10357692
doi: 10.1186/s13024-023-00634-3
Lees, J. G., Gardner, D. K. & Harvey, A. J. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Dev. Camb. Engl. 145, 168997 (2018).
Li, D., Ding, Z., Gui, M., Hou, Y. & Xie, K. Metabolic enhancement of glycolysis and mitochondrial respiration are essential for neuronal differentiation. Cell. Reprogramm. 22, 291–299 (2020).
doi: 10.1089/cell.2020.0034
Lendahl, U. & McKay, R. D. The use of cell lines in neurobiology. Trends Neurosci. 13, 132–137 (1990).
pubmed: 1692169
doi: 10.1016/0166-2236(90)90004-T
Dräger, N. M. et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 25, 1149–1162 (2022).
pubmed: 35953545
pmcid: 9448678
doi: 10.1038/s41593-022-01131-4
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).
pubmed: 18029452
doi: 10.1126/science.1151526
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
pubmed: 16904174
doi: 10.1016/j.cell.2006.07.024
Chandrasekaran, A. et al. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Res. 25, 139–151 (2017).
pubmed: 29128818
doi: 10.1016/j.scr.2017.10.010
Li, Z.-F. et al. A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson’s disease. Dis. Model. Mech. 15, 049125 (2022).
doi: 10.1242/dmm.049125
Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L. & Ross, R. A. Phenotypic diversification in human neuroblastoma cells: Expression of distinct neural crest lineages. Cancer Res. 49, 219–225 (1989).
pubmed: 2535691
Bell, M. & Zempel, H. SH-SY5Y-derived neurons: A human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Rev. Neurosci. 33, 1–15 (2022).
pubmed: 33866701
doi: 10.1515/revneuro-2020-0152
Yusuf, M., Leung, K., Morris, K. J. & Volpi, E. V. Comprehensive cytogenomic profile of the in vitro neuronal model SH-SY5Y. Neurogenetics 14, 63–70 (2013).
pubmed: 23224213
doi: 10.1007/s10048-012-0350-9
Martin, E.-R., Gandawijaya, J. & Oguro-Ando, A. A novel method for generating glutamatergic SH-SY5Y neuron-like cells utilizing B-27 supplement. Front. Pharmacol. 13, 943627 (2022).
pubmed: 36339621
pmcid: 9630362
doi: 10.3389/fphar.2022.943627
Fang, Y. et al. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci. Rep. 4, 7074 (2014).
pubmed: 25399549
pmcid: 4233341
doi: 10.1038/srep07074
Mahamud, N. et al. Untargeted metabolomics reveal pathways associated with neuroprotective effect of oxyresveratrol in SH-SY5Y cells. Sci. Rep. 13, 20385 (2023).
pubmed: 37989867
pmcid: 10663518
doi: 10.1038/s41598-023-47558-y
D’Aloia, A. et al. A new advanced cellular model of functional cholinergic-like neurons developed by reprogramming the human SH-SY5Y neuroblastoma cell line. Cell Death Discov. 10, 1–16 (2024).
doi: 10.1038/s41420-023-01790-7
Dravid, A., Raos, B., Svirskis, D. & O’Carroll, S. J. Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci. Rep. 11, 23935 (2021).
pubmed: 34907283
pmcid: 8671469
doi: 10.1038/s41598-021-03442-1
Xicoy, H., Wieringa, B. & Martens, G. J. M. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol. Neurodegener. 12, 10 (2017).
pubmed: 28118852
pmcid: 5259880
doi: 10.1186/s13024-017-0149-0
Kovalevich, J. & Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 1078, 9–21 (2013).
pubmed: 23975817
pmcid: 5127451
doi: 10.1007/978-1-62703-640-5_2
Encinas, M. et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent. Hum. Neuron-Like Cells. J. Neurochem. 75, 991–1003 (2000).
Kalinovskii, A. P. et al. Retinoic acid-differentiated neuroblastoma SH-SY5Y Is an accessible in vitro model to study native human acid-sensing ion channels 1a (ASIC1a). Biology 11, 167 (2022).
pubmed: 35205034
pmcid: 8868828
doi: 10.3390/biology11020167
Xu, Y. et al. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J. Biol. Chem. 299, 104802 (2023).
pubmed: 37172727
pmcid: 10276297
doi: 10.1016/j.jbc.2023.104802
Hromadkova, L. et al. (2020). Brain-derived neurotrophic factor (BDNF) promotes molecular polarization and differentiation of immature neuroblastoma cells into definitive neurons. Biochim. Biophys. Acta BBA Mol. Cell Res. 1867, 118737
Magalingam, K. B., Radhakrishnan, A. K., Somanath, S. D., Md, S. & Haleagrahara, N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol. Biol. Rep. 47, 8775–8788 (2020).
pubmed: 33098048
doi: 10.1007/s11033-020-05925-2
Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).
pubmed: 8377226
doi: 10.1002/jnr.490350513
Murillo, J. R. et al. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EuPA Open Proteom. 16, 1–11 (2017).
pubmed: 29900121
pmcid: 5965715
doi: 10.1016/j.euprot.2017.06.001
Toselli, M., Tosetti, P. & Taglietti, V. Functional changes in sodium conductances in the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. https://doi.org/10.1152/jn.1996.76.6.3920 (1996).
doi: 10.1152/jn.1996.76.6.3920
pubmed: 8985889
Lopez-Suarez, L., Awabdh, S. A., Coumoul, X. & Chauvet, C. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. NeuroToxicology 92, 131–155 (2022).
pubmed: 35914637
doi: 10.1016/j.neuro.2022.07.008
Şahin, M., Öncü, G., Yılmaz, M. A., Özkan, D. & Saybaşılı, H. Transformation of SH-SY5Y cell line into neuron-like cells: Investigation of electrophysiological and biomechanical changes. Neurosci. Lett. 745, 135628 (2021).
pubmed: 33440235
doi: 10.1016/j.neulet.2021.135628
Teppola, H., Sarkanen, J.-R., Jalonen, T. O. & Linne, M.-L. Morphological differentiation towards neuronal phenotype of SH-SY5Y neuroblastoma cells by estradiol, retinoic acid and cholesterol. Neurochem. Res. 41, 731–747 (2016).
pubmed: 26518675
doi: 10.1007/s11064-015-1743-6
Encinas, M., Iglesias, M., Llecha, N. & Comella, J. X. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J. Neurochem. 73, 1409–1421 (1999).
pubmed: 10501184
doi: 10.1046/j.1471-4159.1999.0731409.x
Segal, R. A. Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26, 299–330 (2003).
pubmed: 12598680
doi: 10.1146/annurev.neuro.26.041002.131421
Constantinescu, R., Constantinescu, A. T., Reichmann, H. & Janetzky, B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J. Neural Transm. Suppl. 3, 17–28. https://doi.org/10.1007/978-3-211-73574-9_3 (2007).
doi: 10.1007/978-3-211-73574-9_3
Strother, L., Miles, G. B., Holiday, A. R., Cheng, Y. & Doherty, G. H. Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing. J. Neurosci. Methods 362, 109301 (2021).
pubmed: 34343572
pmcid: 8434422
doi: 10.1016/j.jneumeth.2021.109301
Hartmann, K.-U. & Heidelberger, C. Studies on fluorinated pyrimidines: XIII. Inhibition of thymidylate synthetase. J. Biol. Chem. 236, 3006–3013 (1961).
pubmed: 13905041
doi: 10.1016/S0021-9258(19)76419-9
Xun, Z. et al. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech. Ageing Dev. 133, 176–185 (2012).
pubmed: 22336883
pmcid: 3357086
doi: 10.1016/j.mad.2012.01.008
Schneider, L. et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic. Biol. Med. 51, 2007–2017 (2011).
pubmed: 21945098
pmcid: 3208787
doi: 10.1016/j.freeradbiomed.2011.08.030
Rumpf, S., Sanal, N. & Marzano, M. Energy metabolic pathways in neuronal development and function. Oxf. Open Neurosci. 2, 004 (2023).
doi: 10.1093/oons/kvad004
Pennington, E. R., Funai, K., Brown, D. A. & Shaikh, S. R. The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1039–1052 (2019).
pubmed: 30951877
pmcid: 6482085
doi: 10.1016/j.bbalip.2019.03.012
Ziegler, A. B. et al. Cell-autonomous control of neuronal dendrite expansion via the fatty acid synthesis regulator SREBP. Cell Rep. 21, 3346–3353 (2017).
pubmed: 29262315
doi: 10.1016/j.celrep.2017.11.069
Marcucci, H., Paoletti, L., Jackowski, S. & Banchio, C. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J. Biol. Chem. 285, 25382–25393 (2010).
pubmed: 20525991
pmcid: 2919101
doi: 10.1074/jbc.M110.139477
Beckervordersandforth, R., Häberle, B. M. & Lie, D. C. Metabolic regulation of adult stem cell-derived neurons. Front. Biol. 10, 107–116 (2015).
doi: 10.1007/s11515-015-1351-5
Wanet, A., Arnould, T., Najimi, M. & Renard, P. Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev. 24, 1957–1971 (2015).
pubmed: 26134242
pmcid: 4543487
doi: 10.1089/scd.2015.0117
Brill, L. B. & Bennett, J. P. Dependence on electron transport chain function and intracellular signaling of genomic responses in SH-SY5Y cells to the mitochondrial neurotoxin MPP(+). Exp. Neurol. 181, 25–38 (2003).
pubmed: 12710931
doi: 10.1016/S0014-4886(02)00045-6
Sparagna, G. C. et al. Linoleate-enrichment of mitochondrial cardiolipin molecular species is developmentally regulated and a determinant of metabolic phenotype. Biology 12, 32 (2022).
pubmed: 36671725
pmcid: 9855531
doi: 10.3390/biology12010032
Fajardo, V. A., Mikhaeil, J. S., Leveille, C. F., Saint, C. & LeBlanc, P. J. Cardiolipin content, linoleic acid composition, and tafazzin expression in response to skeletal muscle overload and unload stimuli. Sci. Rep. 7, 2060 (2017).
pubmed: 28515468
pmcid: 5435726
doi: 10.1038/s41598-017-02089-1
Zhang, J. & Zhang, Q. Using seahorse machine to measure OCR and ECAR in cancer cells. Methods Mol. Biol. 19287, 353–363 (2019).
doi: 10.1007/978-1-4939-9027-6_18
Mookerjee, S. A. & Brand, M. D. Measurement and analysis of extracellular acid production to determine glycolytic rate. J. Vis. Exp. JoVE https://doi.org/10.3791/53464 (2015).
doi: 10.3791/53464
pubmed: 26709455
Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 292, 7189–7207 (2017).
pubmed: 28270511
pmcid: 5409486
doi: 10.1074/jbc.M116.774471
Desousa, B. R. et al. Calculation of ATP production rates using the Seahorse XF analyzer. EMBO Rep. 24, e56380 (2023).
pubmed: 37548091
pmcid: 10561364
doi: 10.15252/embr.202256380
Pacelli, C. et al. Loss of function of the gene encoding the histone methyltransferase KMT2D leads to deregulation of mitochondrial respiration. Cells 9, 1685 (2020).
pubmed: 32668765
pmcid: 7407568
doi: 10.3390/cells9071685
Signorile, A. et al. Resveratrol treatment in human parkin-mutant fibroblasts modulates cAMP and calcium homeostasis regulating the expression of mitochondria-associated membranes resident proteins. Biomolecules 11, 1511 (2021).
pubmed: 34680144
pmcid: 8534032
doi: 10.3390/biom11101511
Tanzarella, P. et al. Increased levels of cAMP by the calcium-dependent activation of soluble adenylyl cyclase in parkin-mutant fibroblasts. Cells 8, 250 (2019).
pubmed: 30875974
pmcid: 6468892
doi: 10.3390/cells8030250
Papa, S. et al. cAMP-dependent protein kinase regulates post-translational processing and expression of complex I subunits in mammalian cells. Biochim. Biophys. Acta 1797, 649–658 (2010).
pubmed: 20303927
doi: 10.1016/j.bbabio.2010.03.013
Signorile, A. et al. cAMP/PKA signaling modulates mitochondrial supercomplex organization. Int. J. Mol. Sci. 23, 9655 (2022).
pubmed: 36077053
pmcid: 9455794
doi: 10.3390/ijms23179655
Cheung, Y.-T. et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30, 127–135 (2009).
pubmed: 19056420
doi: 10.1016/j.neuro.2008.11.001
Clagett-Dame, M., McNeill, E. M. & Muley, P. D. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J. Neurobiol. 66, 739–756 (2006).
pubmed: 16688769
doi: 10.1002/neu.20241
Uemura, K. et al. Presenilin 1 mediates retinoic acid-induced differentiation of SH-SY5Y cells through facilitation of Wnt signaling. J. Neurosci. Res. 73, 166–175 (2003).
pubmed: 12836159
doi: 10.1002/jnr.10641
Lopes, F. M. et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res. 1337, 85–94 (2010).
pubmed: 20380819
doi: 10.1016/j.brainres.2010.03.102
Sarkanen, J.-R. et al. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J. Neurochem. 102, 1941–1952 (2007).
pubmed: 17540009
doi: 10.1111/j.1471-4159.2007.04676.x
Scott, I. G., Akerman, K. E., Heikkilä, J. E., Kaila, K. & Andersson, L. C. Development of a neural phenotype in differentiating ganglion cell-derived human neuroblastoma cells. J. Cell. Physiol. 128, 285–292 (1986).
pubmed: 3090056
doi: 10.1002/jcp.1041280221
Tracey, T. J., Steyn, F. J., Wolvetang, E. J. & Ngo, S. T. Neuronal lipid metabolism: Multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10 (2018).
pubmed: 29410613
pmcid: 5787076
doi: 10.3389/fnmol.2018.00010
Braverman, N. E. & Moser, A. B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822, 1442–1452 (2012).
pubmed: 22627108
doi: 10.1016/j.bbadis.2012.05.008
Yamashita, S., Kanno, S., Nakagawa, K., Kinoshita, M. & Miyazawa, T. Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: Importance of plasmalogen molecular species. RSC Adv. 5, 61012–61020 (2015).
doi: 10.1039/C5RA00632E
Jakubec, M., Bariås, E., Kryuchkov, F., Hjørnevik, L. V. & Halskau, Ø. Fast and quantitative phospholipidomic analysis of SH-SY5Y neuroblastoma cell cultures using liquid chromatography-tandem mass spectrometry and 31P nuclear magnetic resonance. ACS Omega 4, 21596–21603 (2019).
pubmed: 31867556
pmcid: 6921604
doi: 10.1021/acsomega.9b03463
Oemer, G. et al. Phospholipid acyl chain diversity controls the tissue-specific assembly of mitochondrial cardiolipins. Cell Rep. 30, 4281-4291.e4 (2020).
pubmed: 32209484
doi: 10.1016/j.celrep.2020.02.115
Schlame, M. & Greenberg, M. L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 3–7 (2017).
pubmed: 27556952
doi: 10.1016/j.bbalip.2016.08.010
Falabella, M., Vernon, H. J., Hanna, M. G., Claypool, S. M. & Pitceathly, R. D. S. Cardiolipin, mitochondria, and neurological disease. Trends Endocrinol. Metab. TEM 32, 224–237 (2021).
pubmed: 33640250
doi: 10.1016/j.tem.2021.01.006
Yang, Y., Cao, J. & Shi, Y. Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase. J. Biol. Chem. 279, 55866–55874 (2004).
pubmed: 15485873
doi: 10.1074/jbc.M406710200
Pandey, A. et al. Studies on regulation of global protein profile and cellular bioenergetics of differentiating SH-SY5Y cells. Mol. Neurobiol. 59, 1799–1818 (2022).
pubmed: 35025051
doi: 10.1007/s12035-021-02667-5
Esteban-Martínez, L. & Boya, P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming. Autophagy 14, 915–917 (2018).
pubmed: 28614042
pmcid: 6070009
doi: 10.1080/15548627.2017.1332567
Maffezzini, C., Calvo-Garrido, J., Wredenberg, A. & Freyer, C. Metabolic regulation of neurodifferentiation in the adult brain. Cell. Mol. Life Sci. CMLS 77, 2483–2496 (2020).
pubmed: 31912194
doi: 10.1007/s00018-019-03430-9
Iwata, R. & Vanderhaeghen, P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr. Opin. Neurobiol. 69, 231–240 (2021).
pubmed: 34171617
pmcid: 8415079
doi: 10.1016/j.conb.2021.05.003
Cheng, X.-T., Huang, N. & Sheng, Z.-H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110, 1899–1923 (2022).
pubmed: 35429433
pmcid: 9233091
doi: 10.1016/j.neuron.2022.03.015
Sansbury, B. E., Jones, S. P., Riggs, D. W., Darley-Usmar, V. M. & Hill, B. G. Bioenergetic function in cardiovascular cells: The importance of the reserve capacity and its biological regulation. Chem. Biol. Interact. 191, 288–295 (2011).
pubmed: 21147079
doi: 10.1016/j.cbi.2010.12.002
Dranka, B. P., Hill, B. G. & Darley-Usmar, V. M. Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 48, 905–914 (2010).
pubmed: 20093177
pmcid: 2860730
doi: 10.1016/j.freeradbiomed.2010.01.015
Hill, B. G., Dranka, B. P., Zou, L., Chatham, J. C. & Darley-Usmar, V. M. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem. J. 424, 99–107 (2009).
pubmed: 19740075
doi: 10.1042/BJ20090934
Khacho, M., Harris, R. & Slack, R. S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 20, 34–48 (2019).
pubmed: 30464208
doi: 10.1038/s41583-018-0091-3
Varum, S. et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 6, e20914 (2011).
pubmed: 21698063
pmcid: 3117868
doi: 10.1371/journal.pone.0020914
Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512 (2012).
pubmed: 23092819
pmcid: 3594552
doi: 10.1515/hsz-2012-0198
Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).
pubmed: 24529383
pmcid: 3955179
doi: 10.1016/j.cell.2013.12.042
Beckervordersandforth, R. et al. Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560-573.e6 (2017).
pubmed: 28111078
pmcid: 5300896
doi: 10.1016/j.neuron.2016.12.017
López-Doménech, G. & Kittler, J. T. Mitochondrial regulation of local supply of energy in neurons. Curr. Opin. Neurobiol. 81, 102747 (2023).
pubmed: 37392672
doi: 10.1016/j.conb.2023.102747
Camandola, S. & Mattson, M. P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 36, 1474–1492 (2017).
pubmed: 28438892
pmcid: 5452017
doi: 10.15252/embj.201695810
Manganelli, V. et al. Overexpression of neuroglobin promotes energy metabolism and autophagy induction in human neuroblastoma SH-SY5Y cells. Cells 10, 3394 (2021).
pubmed: 34943907
pmcid: 8699457
doi: 10.3390/cells10123394
Yamamoto, H. et al. Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line. Oxid. Med. Cell. Longev. 2016, 1735841 (2016).
pubmed: 27340504
pmcid: 4909908
doi: 10.1155/2016/1735841
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).
pubmed: 10412986
doi: 10.1016/S0092-8674(00)80611-X
Piccinin, E. et al. PGC-1s in the spotlight with Parkinson’s disease. Int. J. Mol. Sci. 22, 3487 (2021).
pubmed: 33800548
pmcid: 8036867
doi: 10.3390/ijms22073487
Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).
pubmed: 23416000
pmcid: 3708305
doi: 10.1016/j.ccr.2012.11.020
O’Brien, L. C., Keeney, P. M. & Bennett, J. P. Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. Stem Cells Dev. 24, 1984–1994 (2015).
pubmed: 25892363
pmcid: 4545371
doi: 10.1089/scd.2015.0076
Zaccagnino, P. et al. An active mitochondrial biogenesis occurs during dendritic cell differentiation. Int. J. Biochem. Cell Biol. 44, 1962–1969 (2012).
pubmed: 22871569
doi: 10.1016/j.biocel.2012.07.024
Chen, C.-T., Shih, Y.-R.V., Kuo, T. K., Lee, O. K. & Wei, Y.-H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells Dayt. Ohio 26, 960–968 (2008).
doi: 10.1634/stemcells.2007-0509
De Rasmo, D. et al. cAMP regulates the functional activity, coupling efficiency and structural organization of mammalian FOF1 ATP synthase. Biochim. Biophys. Acta 1857, 350–358 (2016).
pubmed: 26775111
doi: 10.1016/j.bbabio.2016.01.006
De Rasmo, D. et al. The β-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. Eur. J. Pharmacol. 652, 15–22 (2011).
pubmed: 21118678
doi: 10.1016/j.ejphar.2010.11.016
Frey, U., Huang, Y. Y. & Kandel, E. R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664 (1993).
pubmed: 8389057
doi: 10.1126/science.8389057
Sánchez, S. et al. A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem. Int. 44, 231–242 (2004).
pubmed: 14602086
doi: 10.1016/S0197-0186(03)00150-5
Kume, T. et al. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype. Neurosci. Lett. 443, 199–203 (2008).
pubmed: 18691633
doi: 10.1016/j.neulet.2008.07.079
Berndtsson, J. et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Rep. 21, e51015 (2020).
pubmed: 33016568
pmcid: 7726804
doi: 10.15252/embr.202051015
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
pubmed: 23812712
doi: 10.1126/science.1230381
Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).
pubmed: 27916530
doi: 10.1016/j.cmet.2016.11.004
Scrima, R. et al. Mitochondrial sAC-cAMP-PKA axis modulates the ΔΨm-dependent control coefficients of the respiratory chain complexes: Evidence of respirasome plasticity. Int. J. Mol. Sci. 24, 15144 (2023).
pubmed: 37894823
pmcid: 10607245
doi: 10.3390/ijms242015144
Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. USA 113, 13063–13068 (2016).
pubmed: 27799543
pmcid: 5135366
doi: 10.1073/pnas.1613701113
Hofmann, A. D. et al. OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS ONE 7, e35160 (2012).
pubmed: 22523573
pmcid: 3327658
doi: 10.1371/journal.pone.0035160
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
pubmed: 13671378
doi: 10.1139/y59-099
Lobasso, S. et al. Lipid profiling of parkin-mutant human skin fibroblasts. J. Cell. Physiol. 232, 3540–3551 (2017).
pubmed: 28109117
doi: 10.1002/jcp.25815
Lobasso, S. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front. Physiol. 12, 748895 (2021).
pubmed: 34867454
pmcid: 8637280
doi: 10.3389/fphys.2021.748895
Signorile, A. et al. Human ovarian cancer tissue exhibits increase of mitochondrial biogenesis and cristae remodeling. Cancers 11, 1350 (2019).
pubmed: 31547300
pmcid: 6770021
doi: 10.3390/cancers11091350
Schägger, H., Link, T. A., Engel, W. D. & von Jagow, G. Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol. 126, 224–237 (1986).
pubmed: 2856130
doi: 10.1016/S0076-6879(86)26024-3