Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
28 Mar 2024
Historique:
received: 06 04 2023
accepted: 04 03 2024
pubmed: 29 3 2024
medline: 29 3 2024
entrez: 29 3 2024
Statut: aheadofprint

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with short- and long-term neurological complications. The variety of symptoms makes it difficult to unravel molecular mechanisms underlying neurological sequalae after coronavirus disease 2019 (COVID-19). Here we show that SARS-CoV-2 triggers the up-regulation of synaptic components and perturbs local electrical field potential. Using cerebral organoids, organotypic culture of human brain explants from individuals without COVID-19 and post-mortem brain samples from individuals with COVID-19, we find that neural cells are permissive to SARS-CoV-2 to a low extent. SARS-CoV-2 induces aberrant presynaptic morphology and increases expression of the synaptic components Bassoon, latrophilin-3 (LPHN3) and fibronectin leucine-rich transmembrane protein-3 (FLRT3). Furthermore, we find that LPHN3-agonist treatment with Stachel partially restored organoid electrical activity and reverted SARS-CoV-2-induced aberrant presynaptic morphology. Finally, we observe accumulation of relatively static virions at LPHN3-FLRT3 synapses, suggesting that local hindrance can contribute to synaptic perturbations. Together, our study provides molecular insights into SARS-CoV-2-brain interactions, which may contribute to COVID-19-related neurological disorders.

Identifiants

pubmed: 38548923
doi: 10.1038/s41564-024-01657-2
pii: 10.1038/s41564-024-01657-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-21-CE33-0007-03
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-22-CE15-0007-01
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-INBS-08-03; ProFI FR2048
Organisme : Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
ID : MIE202207016212
Organisme : Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
ID : SPF202110014043
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : 1S57123N
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : G028821N
Organisme : Universitair Ziekenhuis Gent (Ghent University Hospital)
ID : BOF21/GOA/033
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : H2020-INFRAIA-2018-1

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Gavriatopoulou, M. et al. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 20, 493–506 (2020).
doi: 10.1007/s10238-020-00648-x pubmed: 32720223 pmcid: 7383117
Salinas, S. & Simonin, Y. [Neurological damage linked to coronaviruses: SARS-CoV-2 and other human coronaviruses]. Med.Sci. (Paris) 36, 775–782 (2020).
doi: 10.1051/medsci/2020122 pubmed: 32755537
Koralnik, I. J. & Tyler, K. L. COVID-19: a global threat to the nervous system. Ann. Neurol. 88, 1–11 (2020).
doi: 10.1002/ana.25807 pubmed: 32506549 pmcid: 7300753
Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27 e11 (2020).
doi: 10.1016/j.cell.2020.08.028 pubmed: 32882182 pmcid: 7437501
Helms, J. et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care 24, 491 (2020).
doi: 10.1186/s13054-020-03200-1 pubmed: 32771053 pmcid: 7414289
Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882 (2020).
doi: 10.1016/S2215-0366(20)30287-X pubmed: 32593341 pmcid: 7316461
Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627 (2020).
doi: 10.1016/S2215-0366(20)30203-0 pubmed: 32437679 pmcid: 7234781
Nagu, P., Parashar, A., Behl, T. & Mehta, V. CNS implications of COVID-19: a comprehensive review. Rev. Neurosci. 32, 219–234 (2021).
doi: 10.1515/revneuro-2020-0070 pubmed: 33550782
Baker, H. A., Safavynia, S. A. & Evered, L. A. The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors. Br. J. Anaesth. 126, 44–47 (2021).
doi: 10.1016/j.bja.2020.09.045 pubmed: 33187638
Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).
doi: 10.1016/S2215-0366(21)00084-5 pubmed: 33836148 pmcid: 8023694
Hellmuth, J. et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J. Neurovirol. 27, 191–195 (2021).
doi: 10.1007/s13365-021-00954-4 pubmed: 33528824 pmcid: 7852463
Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature https://doi.org/10.1038/s41586-022-04569-5 (2022)
Blazhenets, G. et al. Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J. Nucl. Med. 62, 910–915 (2021).
doi: 10.2967/jnumed.121.262128 pubmed: 33789937 pmcid: 8882885
Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022).
doi: 10.1016/S2215-0366(22)00260-7 pubmed: 35987197 pmcid: 9385200
Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, 3484–3496 (2022).
doi: 10.1016/j.neuron.2022.10.006 pubmed: 36288726 pmcid: 9537254
Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
doi: 10.1038/s41586-022-05542-y pubmed: 36517603 pmcid: 9749650
Ramani, A., Pranty, A. I. & Gopalakrishnan, J. Neurotropic effects of SARS-CoV-2 modeled by the human brain organoids. Stem Cell Rep. 16, 373–384 (2021).
doi: 10.1016/j.stemcr.2021.02.007
Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).
doi: 10.1084/jem.20202135 pubmed: 33433624 pmcid: 7808299
Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
doi: 10.1242/dev.166074 pubmed: 30992274 pmcid: 6503989
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
doi: 10.1038/s41586-019-1506-7 pubmed: 31435019 pmcid: 6919571
Brola, W. & Wilski, M. Neurological consequences of COVID-19. Pharmacol. Rep. 74, 1208–1222 (2022).
doi: 10.1007/s43440-022-00424-6 pubmed: 36180640 pmcid: 9524739
Antony, A. R. & Haneef, Z. Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure 83, 234–241 (2020).
doi: 10.1016/j.seizure.2020.10.014 pubmed: 33121875 pmcid: 7569418
Kubota, T., Gajera, P. K. & Kuroda, N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2020.107682 (2020).
doi: 10.1016/j.yebeh.2020.107682 pubmed: 33342709 pmcid: 7833461
Lin, L. et al. Electroencephalographic abnormalities are common in COVID-19 and are associated with outcomes. Ann. Neurol. 89, 872–883 (2021).
doi: 10.1002/ana.26060 pubmed: 33704826 pmcid: 8104061
Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).
doi: 10.1038/s41586-021-03710-0 pubmed: 34153974 pmcid: 8400927
Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01786-2 (2022).
doi: 10.1038/s41380-022-01786-2 pubmed: 36198765 pmcid: 9533278
Partiot, E. et al. Organotypic culture of human brain explants as a preclinical model for AI-driven antiviral studies. EMBO Mol. Med. https://doi.org/10.1038/s44321-024-00039-9 (2024).
doi: 10.1038/s44321-024-00039-9 pubmed: 38472366 pmcid: 11018746
O’Sullivan, M. L. et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).
doi: 10.1016/j.neuron.2012.01.018 pubmed: 22405201 pmcid: 3326387
Sando, R. & Sudhof, T. C. Latrophilin GPCR signaling mediates synapse formation. Elife 10, e65717 (2021).
doi: 10.7554/eLife.65717 pubmed: 33646123 pmcid: 7954527
Rothe, J. et al. Involvement of the adhesion GPCRs latrop–hilins in the regulation of insulin release. Cell Rep. 26, 1573–1584 e1575 (2019).
doi: 10.1016/j.celrep.2019.01.040 pubmed: 30726739
Ramani, A. et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39, e106230 (2020).
doi: 10.15252/embj.2020106230 pubmed: 32876341 pmcid: 7560208
Ferren, M. et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat. Commun. 12, 5809 (2021).
doi: 10.1038/s41467-021-26096-z pubmed: 34608167 pmcid: 8490365
Bauer, L. et al. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 45, 358–368 (2022).
doi: 10.1016/j.tins.2022.02.006 pubmed: 35279295 pmcid: 8890977
Zivaljic, M., et al. Poor sensitivity of iPSC-derived neural progenitors and glutamatergic neurons to SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2022.07.25.501370 (2022)
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 e214 (2019).
doi: 10.1016/j.neuron.2019.05.002 pubmed: 31171447 pmcid: 6764089
Beckman, D. et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 41, 111573 (2022).
doi: 10.1016/j.celrep.2022.111573 pubmed: 36288725 pmcid: 9554328
Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848 e843 (2020).
doi: 10.1016/j.chom.2020.04.004 pubmed: 32289263 pmcid: 7153529
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).
doi: 10.2807/1560-7917.ES.2020.25.3.2000045 pubmed: 31992387 pmcid: 6988269
Fernandez-Rodriguez, A. et al. Post-mortem microbiology in sudden death: sampling protocols proposed in different clinical settings. Clin. Microbiol. Infect. 25, 570–579 (2019).
doi: 10.1016/j.cmi.2018.08.009 pubmed: 30145399
Burbach, J. P. H. & Meijer, D. H. Latrophilin’s social protein network. Front. Neurosci. 13, 643 (2019).
doi: 10.3389/fnins.2019.00643 pubmed: 31297045 pmcid: 6608557
Sando, R., Jiang, X. & Sudhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).
doi: 10.1126/science.aav7969 pubmed: 30792275 pmcid: 6636343
Bielarz, V. et al. Susceptibility of neuroblastoma and glioblastoma cell lines to SARS-CoV-2 infection. Brain Res. 1758, 147344 (2021).
doi: 10.1016/j.brainres.2021.147344 pubmed: 33556379 pmcid: 7863753
Fontes-Dantas, F. L. et al. SARS-CoV-2 spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep. 42, 112189 (2023).
doi: 10.1016/j.celrep.2023.112189 pubmed: 36857178 pmcid: 9935273
May, D. G. et al. A BioID-derived proximity interactome for SARS-CoV-2 proteins. Viruses https://doi.org/10.3390/v14030611 (2022).
Bakhache, W., et al. Pharmacological perturbation of intracellular dynamics as a SARS-CoV-2 antiviral strategy. Preprint at bioRxiv https://doi.org/10.1101/2021.09.10.459410 (2021)
Prasad, V. & Bartenschlager, R. A snapshot of protein trafficking in SARS-CoV-2 infection. Biol. Cell. https://doi.org/10.1111/boc.202200073 (2022).
doi: 10.1111/boc.202200073 pubmed: 36314261 pmcid: 9874443
Jouvenet, N., Goujon, C. & Banerjee, A. Clash of the titans: interferons and SARS-CoV-2. Trends Immunol. 42, 1069–1072 (2021).
doi: 10.1016/j.it.2021.10.009 pubmed: 34742657 pmcid: 8519778
Silva, M. M. et al. MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc. Natl Acad. Sci. USA 116, 5727–5736 (2019).
doi: 10.1073/pnas.1900338116 pubmed: 30808806 pmcid: 6431224
Schanzenbacher, C. T., Langer, J. D. & Schuman, E. M. Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses. Elife 7, e33322 (2018).
doi: 10.7554/eLife.33322 pubmed: 29447110 pmcid: 5814146
Dubes, S. et al. miR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity. EMBO J. 41, e109012 (2022).
doi: 10.15252/embj.2021109012 pubmed: 35875872 pmcid: 9574720
Sun, Z. et al. Mass spectrometry analysis of newly emerging coronavirus HCoV-19 spike protein and human ACE2 reveals camouflaging glycans and unique post-translational modifications. Engineering 7, 1441–1451 (2021).
doi: 10.1016/j.eng.2020.07.014 pubmed: 32904601
Lorenzo, R. et al. Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif. J. Biol. Chem. 297, 101175 (2021).
doi: 10.1016/j.jbc.2021.101175 pubmed: 34499924 pmcid: 8421091
Zhao, J., Li, J., Xu, S. & Feng, P. Emerging roles of protein deamidation in innate immune signaling. J. Virol. 90, 4262–4268 (2016).
doi: 10.1128/JVI.01980-15 pubmed: 26889032 pmcid: 4836359
Arcos-Burgos, M. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 15, 1053–1066 (2010).
doi: 10.1038/mp.2010.6 pubmed: 20157310
Lange, M. et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 17, 946–954 (2012).
doi: 10.1038/mp.2012.29 pubmed: 22508465
Regan, S. L. et al. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol. Dis. 158, 105456 (2021).
doi: 10.1016/j.nbd.2021.105456 pubmed: 34352385 pmcid: 8440465
Domene, S. et al. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am. J. Med. Genet. B 156B, 11–18 (2011).
doi: 10.1002/ajmg.b.31141
Orsini, C. A. et al. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol. Genet. Genomic Med. 4, 322–343 (2016).
doi: 10.1002/mgg3.207 pubmed: 27247960 pmcid: 4867566
Wallis, D. et al. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res. 1463, 85–92 (2012).
doi: 10.1016/j.brainres.2012.04.053 pubmed: 22575564
Li, J. et al. Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat. Commun. 11, 2140 (2020).
doi: 10.1038/s41467-020-16029-7 pubmed: 32358586 pmcid: 7195488
Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).
doi: 10.1038/s41593-019-0350-2 pubmed: 30886407 pmcid: 6436729
Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569 e557 (2019).
doi: 10.1016/j.stem.2019.08.002 pubmed: 31474560 pmcid: 6778040
Chaumont, H. et al. Long-term outcomes after NeuroCOVID: a 6-month follow-up study on 60 patients. Rev. Neurol. 178, 137–143 (2022).
doi: 10.1016/j.neurol.2021.12.008 pubmed: 35000793
Coulter, M. E. et al. The ESCRT-III protein CHMP1A mediates secretion of sonic hedgehog on a distinctive subtype of extracellular vesicles. Cell Rep. 24, 973–986 e978 (2018).
doi: 10.1016/j.celrep.2018.06.100 pubmed: 30044992 pmcid: 6178983
Gee, G. V., Manley, K. & Atwood, W. J. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism. Virology 314, 101–109 (2003).
doi: 10.1016/S0042-6822(03)00389-1 pubmed: 14517064
Rebendenne, A. et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J. Virol. 95, e02415–e02420 (2021).
doi: 10.1128/JVI.02415-20 pubmed: 33514628 pmcid: 8103705
Bouyssie, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148–3155 (2020).
doi: 10.1093/bioinformatics/btaa118 pubmed: 32096818 pmcid: 7214047
Wieczorek, S., Combes, F., Borges, H. & Burger, T. Protein-level statistical analysis of quantitative label-free proteomics data with ProStaR. Methods Mol. Biol. 1959, 225–246 (2019).
doi: 10.1007/978-1-4939-9164-8_15 pubmed: 30852826
Hulstaert, N. et al. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J. Proteome Res. 19, 537–542 (2020).
doi: 10.1021/acs.jproteome.9b00328 pubmed: 31755270
Degroeve, S., et al. ionbot: a novel, innovative and sensitive machine learning approach to LC-MS/MS peptide identification. Preprint at bioRxiv https://doi.org/10.1101/2021.07.02.450686 (2021).
Lutz, W. WillyLutz/electrical-analysis-sars-cov-2. GitHub https://github.com/WillyLutz/electrical-analysis-sars-cov-2 (2024).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
doi: 10.1093/nar/gkab1038 pubmed: 34723319

Auteurs

Emma Partiot (E)

CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
Univ Montpellier, Montpellier, France.

Aurélie Hirschler (A)

Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France.
Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France.

Sophie Colomb (S)

EDPFM (Equipe de Droit Pénal et de Sciences Forensiques de Montpellier), Univ Montpellier, Montpellier, France.
Emergency Pole, Forensic Medicine Department, Montpellier University Hospital, Montpellier, France.

Willy Lutz (W)

CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
Univ Montpellier, Montpellier, France.
UM-CNRS Laboratoire d'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), Montpellier, France.

Tine Claeys (T)

VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

François Delalande (F)

Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France.
Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France.

Maika S Deffieu (MS)

CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
Univ Montpellier, Montpellier, France.

Yonis Bare (Y)

CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
Univ Montpellier, Montpellier, France.

Judith R E Roels (JRE)

Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.

Barbara Gorda (B)

CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
Univ Montpellier, Montpellier, France.

Joanna Bons (J)

Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France.
Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France.

Domitille Callon (D)

University of Reims Champagne-Ardenne, Medicine Faculty, Laboratory of Virology, CardioVir UMR-S 1320, Reims, France.
Forensic, Virology and ENT Departments, University Hospital Centre (CHU), Reims, France.

Laurent Andreoletti (L)

University of Reims Champagne-Ardenne, Medicine Faculty, Laboratory of Virology, CardioVir UMR-S 1320, Reims, France.
Forensic, Virology and ENT Departments, University Hospital Centre (CHU), Reims, France.

Marc Labrousse (M)

Forensic, Virology and ENT Departments, University Hospital Centre (CHU), Reims, France.
Anatomy laboratory, UFR Médecine, Université de Reims Champagne-Ardenne, Reims, France.

Frank M J Jacobs (FMJ)

Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.

Valérie Rigau (V)

Univ Montpellier, Montpellier, France.
Pathological Department and Biological Resources Center BRC, Montpellier University Hospital, 'Cerebral plasticity, Stem cells and Glial tumors' team. IGF- Institut de génomique fonctionnelle INSERM U 1191 - CNRS UMR 5203, Univ Montpellier, Montpellier, France.

Benoit Charlot (B)

Univ Montpellier, Montpellier, France.
Institut d'Electronique et des Systèmes (IES), CNRS, Montpellier, France.

Lennart Martens (L)

VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Christine Carapito (C)

Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France.
Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France.

Gowrishankar Ganesh (G)

Univ Montpellier, Montpellier, France.
UM-CNRS Laboratoire d'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), Montpellier, France.

Raphael Gaudin (R)

CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France. raphael.gaudin@irim.cnrs.fr.
Univ Montpellier, Montpellier, France. raphael.gaudin@irim.cnrs.fr.

Classifications MeSH