Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
29 Mar 2024
Historique:
received: 23 12 2022
accepted: 13 02 2024
medline: 30 3 2024
pubmed: 30 3 2024
entrez: 30 3 2024
Statut: aheadofprint

Résumé

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.

Identifiants

pubmed: 38553553
doi: 10.1038/s41588-024-01686-x
pii: 10.1038/s41588-024-01686-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ontario Brain Institute (Institut Ontarien du Cerveau)
ID : Childhood Cerebral Palsy Neuroscience Discovery Network (CP-NET)
Organisme : Ontario Brain Institute (Institut Ontarien du Cerveau)
ID : Childhood Cerebral Palsy Neuroscience Discovery Network (CP-NET)
Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : PJT-153004
Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : PJT-153004
Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : PJT-175329
Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : PJT-153004

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

McIntyre, S. et al. Global prevalence of cerebral palsy: a systematic analysis. Dev. Med. Child Neurol. 64, 1494–1506 (2022).
pubmed: 35952356 pmcid: 9804547 doi: 10.1111/dmcn.15346
Rosenbaum, P. et al. A report: the definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 109, 8–14 (2007).
pubmed: 17370477
Christensen, D. et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning—Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev. Med. Child Neurol. 56, 59–65 (2014).
pubmed: 24117446 doi: 10.1111/dmcn.12268
Jin, S. C. et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat. Genet. 52, 1046–1056 (2020).
pubmed: 32989326 doi: 10.1038/s41588-020-0695-1
Amankwah, N. et al. Cerebral palsy in Canada, 2011–2031: results of a microsimulation modelling study of epidemiological and cost impacts. Health Promot. Chronic Dis. Prev. Can. 40, 25–37 (2020).
pubmed: 32049464 pmcid: 7053851 doi: 10.24095/hpcdp.40.2.01
Friedman, J. M., van Essen, P. & van Karnebeek, C. D. M. Cerebral palsy and related neuromotor disorders: overview of genetic and genomic studies. Mol. Genet. Metab. https://doi.org/10.1016/j.ymgme.2021.11.001 (2021).
Chopra, M. et al. Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Ann. Clin. Transl. Neurol. 9, 193–205 (2022).
pubmed: 35076175 pmcid: 8862420 doi: 10.1002/acn3.51506
Li, N. et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 145, 119–141 (2022).
pubmed: 34077496 doi: 10.1093/brain/awab209
Mei, H. et al. Genetic spectrum identified by exome sequencing in a Chinese pediatric cerebral palsy cohort. J. Pediatr. 242, 206–212.e206 (2022).
pubmed: 34788679 doi: 10.1016/j.jpeds.2021.11.019
Rosello, M. et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr. Res. 90, 284–288 (2021).
pubmed: 33177673 doi: 10.1038/s41390-020-01250-3
Segel, R. et al. Copy number variations in cryptogenic cerebral palsy. Neurology 84, 1660–1668 (2015).
pubmed: 25817843 doi: 10.1212/WNL.0000000000001494
May, H. J. et al. Genetic testing in individuals with cerebral palsy. Dev. Med. Child Neurol. 63, 1448–1455 (2021).
pubmed: 34114234 pmcid: 9277698 doi: 10.1111/dmcn.14948
Moreno-De-Luca, A. et al. Molecular diagnostic yield of exome sequencing in patients with cerebral palsy. JAMA 325, 467–475 (2021).
pubmed: 33528536 pmcid: 7856544 doi: 10.1001/jama.2020.26148
Zarrei, M. et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet. Med. 20, 172–180 (2018).
pubmed: 28771244 doi: 10.1038/gim.2017.83
Takezawa, Y. et al. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann. Clin. Transl. Neurol. 5, 538–551 (2018).
pubmed: 29761117 pmcid: 5945967 doi: 10.1002/acn3.551
Kayumi, S. et al. Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet. Med. 24, 2351–2366 (2022).
pubmed: 36083290 pmcid: 9939054 doi: 10.1016/j.gim.2022.08.006
Srivastava, S. et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in cerebral palsy: a systematic review and meta-analysis. JAMA Neurol. 79, 1287–1295 (2022).
pubmed: 36279113 pmcid: 9593320 doi: 10.1001/jamaneurol.2022.3549
Pearson, T. S., Pons, R., Ghaoui, R. & Sue, C. M. Genetic mimics of cerebral palsy. Mov. Disord. 34, 625–636 (2019).
pubmed: 30913345 doi: 10.1002/mds.27655
MacLennan, A. H. et al. Genetic or other causation should not change the clinical diagnosis of cerebral palsy. J. Child Neurol. 34, 472–476 (2019).
pubmed: 30963790 pmcid: 6582263 doi: 10.1177/0883073819840449
Hale, A. T. et al. Genome-wide association study identifies genetic risk factors for spastic cerebral palsy. Neurosurgery 89, 435–442 (2021).
pubmed: 34098570 pmcid: 8364821 doi: 10.1093/neuros/nyab184
Corbett, M. A. et al. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom. Med. 3, 33 (2018).
pubmed: 30564460 pmcid: 6294788 doi: 10.1038/s41525-018-0073-4
McMichael, G. et al. Rare copy number variation in cerebral palsy. Eur. J. Hum. Genet. 22, 40–45 (2014).
pubmed: 23695280 doi: 10.1038/ejhg.2013.93
Oskoui, M. Disentangling racial and ethnic disparities in cerebral palsy. Dev. Med. Child Neurol. 57, 791–792 (2015).
pubmed: 25900384 doi: 10.1111/dmcn.12772
McMichael, G. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol. Psychiatry 20, 176–182 (2015).
pubmed: 25666757 doi: 10.1038/mp.2014.189
Kadotani, T., Watanabe, Y., Saito, T., Sawano, K. & Minatozaki, K. A chromosomal study on 100 cases of cerebral palsy. Int. J. Hum. Genet. 1, 109–112 (2001).
doi: 10.1080/09723757.2001.11885743
Oskoui, M. et al. Clinically relevant copy number variations detected in cerebral palsy. Nat. Commun. 6, 7949 (2015).
pubmed: 26236009 doi: 10.1038/ncomms8949
van Eyk, C. L. et al. Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom. Med. 6, 74 (2021).
pubmed: 34531397 pmcid: 8445947 doi: 10.1038/s41525-021-00238-0
Pham, R. et al. Definition and diagnosis of cerebral palsy in genetic studies: a systematic review. Dev. Med. Child Neurol. 62, 1024–1030 (2020).
pubmed: 32542675 doi: 10.1111/dmcn.14585
Costain, G. et al. Genome sequencing as a diagnostic test in children with unexplained medical complexity. JAMA Netw. Open 3, e2018109 (2020).
pubmed: 32960281 pmcid: 7509619 doi: 10.1001/jamanetworkopen.2020.18109
Trost, B. et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86 (2020).
pubmed: 32717741 pmcid: 9348607 doi: 10.1038/s41586-020-2579-z
Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 148, 4409–4427.e4418 (2022).
doi: 10.1016/j.cell.2022.10.009
Haque, B. et al. Contemporary aetiologies of medical complexity in children: a cohort study. Arch. Dis. Child. 108, 147–149 (2023).
pubmed: 36600318 doi: 10.1136/archdischild-2022-325094
Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).
pubmed: 21784246 pmcid: 3232425 doi: 10.1016/j.cell.2011.06.013
Cheng, F. et al. Comprehensive characterization of protein-protein interactions perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021).
pubmed: 33558758 pmcid: 8237108 doi: 10.1038/s41588-020-00774-y
Ramazi, S. & Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database https://doi.org/10.1093/database/baab012 (2021).
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Wan, J. et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 44, 704–708 (2012).
pubmed: 22544365 pmcid: 3366034 doi: 10.1038/ng.2254
Fu, Y. et al. RGS-insensitive G-protein mutations to study the role of endogenous RGS proteins. Methods Enzymol. 389, 229–243 (2004).
pubmed: 15313569 doi: 10.1016/S0076-6879(04)89014-1
Yokoi, S. et al. TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis. Sci. Rep. 5, 15165 (2015).
pubmed: 26493046 pmcid: 4615979 doi: 10.1038/srep15165
Okumura, A. et al. A patient with a GNAO1 mutation with decreased spontaneous movements, hypotonia, and dystonic features. Brain Dev. 40, 926–930 (2018).
pubmed: 29935962 doi: 10.1016/j.braindev.2018.06.005
Gonzalez-Mantilla, P. J. et al. Diagnostic yield of exome sequencing in cerebral palsy and implications for genetic testing guidelines: a systematic review and meta-analysis. JAMA Pediatr. 177, 472–478 (2023).
pubmed: 36877506 pmcid: 9989956 doi: 10.1001/jamapediatrics.2023.0008
Lanfranconi, S. & Markus, H. S. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41, e513–e518 (2010).
pubmed: 20558831 doi: 10.1161/STROKEAHA.110.581918
Meuwissen, M. E. et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet. Med. 17, 843–853 (2015).
pubmed: 25719457 doi: 10.1038/gim.2014.210
Yoneda, Y. et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann. Neurol. 73, 48–57 (2013).
pubmed: 23225343 doi: 10.1002/ana.23736
Khalid, R. et al. COL4A1 and fetal vascular origins of schizencephaly. Neurology 90, 232–234 (2018).
pubmed: 29282339 pmcid: 5791794 doi: 10.1212/WNL.0000000000004890
Costain, G. et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. Eur. J. Hum. Genet. 26, 740–744 (2018).
pubmed: 29453418 pmcid: 5945683 doi: 10.1038/s41431-018-0114-6
Morton, S. U. et al. Multicenter consensus approach to evaluation of neonatal hypotonia in the genomic era: a review. JAMA Neurol. 79, 405–413 (2022).
pubmed: 35254387 pmcid: 10134401 doi: 10.1001/jamaneurol.2022.0067
Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).
pubmed: 36007526 pmcid: 9502059 doi: 10.1016/j.ajhg.2022.08.003
Donn, S. M., Chiswick, M. L. & Fanaroff, J. M. Medico-legal implications of hypoxic-ischemic birth injury. Semin. Fetal Neonatal Med. 19, 317–321 (2014).
pubmed: 25150792 doi: 10.1016/j.siny.2014.08.005
Chiurazzi, P. & Pirozzi, F. Advances in understanding—genetic basis of intellectual disability. F1000Res. https://doi.org/10.12688/f1000research.7134.1 (2016).
Brown, S. A. et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat. Genet. 20, 180–183 (1998).
pubmed: 9771712 doi: 10.1038/2484
Depienne, C. & Mandel, J. L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).
pubmed: 33811808 pmcid: 8205997 doi: 10.1016/j.ajhg.2021.03.011
Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).
pubmed: 27869829 doi: 10.1038/ng.3725
Mojarad, B. A. et al. Genome-wide tandem repeat expansions contribute to schizophrenia risk. Mol. Psychiatry 27, 3692–3698 (2022).
pubmed: 35546631 pmcid: 9708556 doi: 10.1038/s41380-022-01575-x
Wen, J. et al. Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia. Mol. Psychiatry 28, 475–482 (2023).
pubmed: 36380236 doi: 10.1038/s41380-022-01857-4
Tu, W. et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140, 222–234 (2010).
pubmed: 20141836 pmcid: 2820131 doi: 10.1016/j.cell.2009.12.055
Chen, Y. et al. Clinical and genetic heterogeneity in a cohort of Chinese children with dopa-responsive dystonia. Front. Pediatr. 8, 83 (2020).
pubmed: 32185155 pmcid: 7058807 doi: 10.3389/fped.2020.00083
Diaz Heijtz, R., Almeida, R., Eliasson, A. C. & Forssberg, H. Genetic variation in the dopamine system influences intervention outcome in children with cerebral palsy. eBioMedicine 28, 162–167 (2018).
pubmed: 29339100 pmcid: 5835543 doi: 10.1016/j.ebiom.2017.12.028
Wijemanne, S. & Jankovic, J. Dopa-responsive dystonia–clinical and genetic heterogeneity. Nat. Rev. Neurol. 11, 414–424 (2015).
pubmed: 26100751 doi: 10.1038/nrneurol.2015.86
Fink, J. K. Hereditary spastic paraplegia: clinical principles and genetic advances. Semin. Neurol. 34, 293–305 (2014).
pubmed: 25192507 doi: 10.1055/s-0034-1386767
Trost, B. et al. Impact of DNA source on genetic variant detection from human whole-genome sequencing data. J. Med. Genet. 56, 809–817 (2019).
pubmed: 31515274 doi: 10.1136/jmedgenet-2019-106281
Jacquemont, S. et al. Genes to mental health (G2MH): a framework to map the combined effects of rare and common variants on dimensions of cognition and psychopathology. Am. J. Psychiatry 179, 189–203 (2022).
pubmed: 35236119 pmcid: 9345000 doi: 10.1176/appi.ajp.2021.21040432
Zarrei, M. et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum. Mol. Genet. 32, 2411–2421 (2023).
pubmed: 37154571 pmcid: 10360394 doi: 10.1093/hmg/ddad074
Hamdan, F. F. et al. High rate of recurrent de Novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 101, 664–685 (2017).
Jurgens, J. A. et al. Novel variants in TUBA1A cause congenital fibrosis of the extraocular muscles with or without malformations of cortical brain development. Eur. J. Hum. Genet. 29, 816–826 (2021).
Hamdan, F. F. et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 10, e1004772 (2014).
Moraes, T. J. et al. The Canadian healthy infant longitudinal development birth cohort study: biological samples and biobanking. Paediatr. Perinat. Epidemiol. 29, 84–92 (2015).
pubmed: 25405552 doi: 10.1111/ppe.12161
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science https://doi.org/10.1126/science.aay5012 (2020).
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Yuen, R. K. C. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).
pmcid: 5501701 doi: 10.1038/nn.4524
Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).
pubmed: 21324876 pmcid: 3106330 doi: 10.1101/gr.114876.110
Zhu, M. et al. Using ERDS to infer copy-number variants in high-coverage genomes. Am. J. Hum. Genet. 91, 408–421 (2012).
pubmed: 22939633 pmcid: 3511991 doi: 10.1016/j.ajhg.2012.07.004
Trost, B. et al. A comprehensive workflow for read depth-based identification of copy-number variation from whole-genome sequence data. Am. J. Hum. Genet. 102, 142–155 (2018).
pubmed: 29304372 pmcid: 5777982 doi: 10.1016/j.ajhg.2017.12.007
Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).
pubmed: 26647377 doi: 10.1093/bioinformatics/btv710
Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).
pubmed: 22962449 pmcid: 3436805 doi: 10.1093/bioinformatics/bts378
Lott, M. T. et al. mtDNA variation and analysis using Mitomap and Mitomaster. Curr. Protoc. Bioinformatics 44, 1.23.1–1.23.26 (2013).
pubmed: 25489354 doi: 10.1002/0471250953.bi0123s44
Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).
pubmed: 10508508 doi: 10.1038/13779
Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).
pubmed: 31134279 pmcid: 6853681 doi: 10.1093/bioinformatics/btz431
Dolzhenko, E. et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 102 (2020).
pubmed: 32345345 pmcid: 7187524 doi: 10.1186/s13059-020-02017-z
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
Zarrei, M. et al. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom. Med. 4, 26 (2019).
pubmed: 31602316 pmcid: 6779875 doi: 10.1038/s41525-019-0098-3
Zarrei, M., MacDonald, J. R., Merico, D. & Scherer, S. W. A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172–183 (2015).
pubmed: 25645873 doi: 10.1038/nrg3871
MacDonald, J. R., Ziman, R., Yuen, R. K., Feuk, L. & Scherer, S. W. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014).
pubmed: 24174537 doi: 10.1093/nar/gkt958
Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e524 (2019).
pubmed: 30661751 doi: 10.1016/j.cell.2018.12.015
Xiong, H. Y. et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).
pubmed: 25525159 doi: 10.1126/science.1254806
Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014).
pubmed: 25416802 pmcid: 4267638 doi: 10.1093/nar/gku1206
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).
pubmed: 26582918 doi: 10.1093/nar/gkv1222
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).
pubmed: 25741868 pmcid: 4544753 doi: 10.1038/gim.2015.30
Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).
pubmed: 31690835 doi: 10.1038/s41436-019-0686-8
McCormick, E. M. et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 41, 2028–2057 (2020).
pubmed: 32906214 pmcid: 7717623 doi: 10.1002/humu.24107
Manshaei, R. et al. Genes and pathways implicated in tetralogy of Fallot revealed by ultra-rare variant burden analysis in 231 genome sequences. Front. Genet. 11, 957 (2020).
pubmed: 33110418 pmcid: 7522597 doi: 10.3389/fgene.2020.00957
Pinese, M. et al. The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly. Nat. Commun. 11, 435 (2020).
pubmed: 31974348 pmcid: 6978518 doi: 10.1038/s41467-019-14079-0
Schubert, E., Sander, J., Ester, M., Kriegel, H. P. & Xu, X. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42, 19 (2017).
Fehlings, D. L. et al. CP-NET Clinical Database Platform: genomic architecture of CP (whole genome sequencing). Brain-CODE, https://doi.org/10.60955/fszr-5q79 (2024).

Auteurs

Darcy L Fehlings (DL)

Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.
Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Mehdi Zarrei (M)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Worrawat Engchuan (W)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Neal Sondheimer (N)

Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Bhooma Thiruvahindrapuram (B)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Jeffrey R MacDonald (JR)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Edward J Higginbotham (EJ)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Ritesh Thapa (R)

Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.

Tarannum Behlim (T)

Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.

Sabrina Aimola (S)

Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.

Lauren Switzer (L)

Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.

Pamela Ng (P)

Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.

John Wei (J)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Prakroothi S Danthi (PS)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Giovanna Pellecchia (G)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Sylvia Lamoureux (S)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Karen Ho (K)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Sergio L Pereira (SL)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Jill de Rijke (J)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Wilson W L Sung (WWL)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Alireza Mowjoodi (A)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Jennifer L Howe (JL)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Thomas Nalpathamkalam (T)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Roozbeh Manshaei (R)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, Ontario, Canada.

Siavash Ghaffari (S)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Joseph Whitney (J)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Rohan V Patel (RV)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Omar Hamdan (O)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Rulan Shaath (R)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Brett Trost (B)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Shannon Knights (S)

Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Grandview Children's Centre, Oshawa, Ontario, Canada.

Dawa Samdup (D)

Department of Pediatrics, Queen's University, Kingston, Ontario, Canada.

Anna McCormick (A)

Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada.

Carolyn Hunt (C)

Grandview Children's Centre, Oshawa, Ontario, Canada.

Adam Kirton (A)

Department of Pediatrics, Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada.

Anne Kawamura (A)

Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.
Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Ronit Mesterman (R)

Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.

Jan Willem Gorter (JW)

Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.

Nomazulu Dlamini (N)

Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.

Daniele Merico (D)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Deep Genomics Inc., Toronto, Ontario, Canada.
Vevo Therapeutics Inc., San Francisco, CA, USA.

Murto Hilali (M)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Kyle Hirschfeld (K)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Kritika Grover (K)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Nelson X Bautista (NX)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Kara Han (K)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Christian R Marshall (CR)

Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Ryan K C Yuen (RKC)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Padmaja Subbarao (P)

Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology, University of Toronto, Toronto, Ontario, Canada.

Meghan B Azad (MB)

Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.

Stuart E Turvey (SE)

Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.

Piush Mandhane (P)

Faculty of Medicine & Dentistry, Pediatrics Department, University of Alberta, Edmonton, Alberta, Canada.

Theo J Moraes (TJ)

Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Program in Translation Medicine & Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Elinor Simons (E)

Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.

George Maxwell (G)

Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Falls Church, VA, USA.

Michael Shevell (M)

Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.

Gregory Costain (G)

Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Jacques L Michaud (JL)

Departments of Pediatrics and Neurosciences, Université de Montréal, Montréal, Québec, Canada.
CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada.

Fadi F Hamdan (FF)

CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada.
Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.

Julie Gauthier (J)

CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada.
Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.

Kevin Uguen (K)

CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada.

Dimitri J Stavropoulos (DJ)

Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Richard F Wintle (RF)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Maryam Oskoui (M)

Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.

Stephen W Scherer (SW)

The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada. Stephen.Scherer@sickkids.ca.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. Stephen.Scherer@sickkids.ca.
Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada. Stephen.Scherer@sickkids.ca.

Classifications MeSH