Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes.
Journal
Cancer gene therapy
ISSN: 1476-5500
Titre abrégé: Cancer Gene Ther
Pays: England
ID NLM: 9432230
Informations de publication
Date de publication:
29 Mar 2024
29 Mar 2024
Historique:
received:
31
01
2024
accepted:
21
03
2024
revised:
19
03
2024
medline:
30
3
2024
pubmed:
30
3
2024
entrez:
30
3
2024
Statut:
aheadofprint
Résumé
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.
Identifiants
pubmed: 38553638
doi: 10.1038/s41417-024-00767-7
pii: 10.1038/s41417-024-00767-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ligue Contre le Cancer
ID : CR3304
Organisme : Conseil régional de Bourgogne-Franche-Comté (Regional Council of Burgundy)
ID : 2021-Y-08290
Informations de copyright
© 2024. The Author(s).
Références
Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560:243–7. https://doi.org/10.1038/s41586-018-0389-3
doi: 10.1038/s41586-018-0389-3
pubmed: 30069053
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23:1231–51. https://doi.org/10.1093/neuonc/noab106
doi: 10.1093/neuonc/noab106
pubmed: 34185076
pmcid: 8328013
Zur Hausen H. Cancers in humans: a lifelong search for contributions of infectious agents, autobiographic Notes. Annu Rev Virol. 2019;6:1–28. https://doi.org/10.1146/annurev-virology-092818-015907
doi: 10.1146/annurev-virology-092818-015907
pubmed: 31567062
El Baba R, Herbein G. Immune landscape of CMV infection in cancer patients: from “canonical” diseases toward virus-elicited oncomodulation. Front Immunol. 2021;12:730765. https://doi.org/10.3389/fimmu.2021.730765
doi: 10.3389/fimmu.2021.730765
pubmed: 34566995
pmcid: 8456041
Geder L, Sanford EJ, Rohner TJ, Rapp F. Cytomegalovirus and cancer of the prostate: in vitro transformation of human cells. Cancer Treat Rep. 1977;61:139–46.
pubmed: 68820
Cobbs C, Harkins L, Samanta M, Gillespie G, Bharara S, King P, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50.
pubmed: 12067971
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, et al. The human cytomegalovirus strain DB activates oncogenic pathways in mammary epithelial cells. EBioMedicine. 2018;30:167–83. https://doi.org/10.1016/j.ebiom.2018.03.015
doi: 10.1016/j.ebiom.2018.03.015
pubmed: 29628341
pmcid: 5952350
Herbein G. The human cytomegalovirus, from oncomodulation to oncogenesis. Viruses. 2018;10:408. https://doi.org/10.3390/v10080408
doi: 10.3390/v10080408
pubmed: 30081496
pmcid: 6115842
El Baba R, Pasquereau S, Haidar Ahmad S, Monnien F, Abad M, Bibeau F, et al. EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene. 2023;42:2031–45. https://doi.org/10.1038/s41388-023-02709-3
doi: 10.1038/s41388-023-02709-3
pubmed: 37147437
pmcid: 10256614
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene. 2023;42:3047–61. https://doi.org/10.1038/s41388-023-02813-4
doi: 10.1038/s41388-023-02813-4
pubmed: 37634008
pmcid: 10555822
Bouezzedine F, El Baba R, Haidar Ahmad S, Herbein G. Polyploid giant cancer cells generated from human cytomegalovirus-infected prostate epithelial cells. Cancers. 2023;15:4994. https://doi.org/10.3390/cancers15204994
doi: 10.3390/cancers15204994
pubmed: 37894361
pmcid: 10604969
Belzile J-P, Stark TJ, Yeo GW, Spector DH. Human cytomegalovirus infection of human embryonic stem cell-derived primitive neural stem cells is restricted at several steps but leads to the persistence of viral DNA. J Virol. 2014;88:4021–39. https://doi.org/10.1128/JVI.03492-13
doi: 10.1128/JVI.03492-13
pubmed: 24453373
pmcid: 3993748
Odeberg J, Wolmer N, Falci S, Westgren M, Seiger Å, Söderberg-Nauclér C. Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. J Virol. 2006;80:8929–39. https://doi.org/10.1128/JVI.00676-06
doi: 10.1128/JVI.00676-06
pubmed: 16940505
pmcid: 1563895
Kossmann T, Morganti‐Kossmann MC, Orenstein JM, Britt WJ, Wahl SM, Smith PD. Cytomegalovirus production by infected astrocytes correlates with transforming growth factor‐β Release. J INFECT DIS. 2003;187:534–41. https://doi.org/10.1086/373995
doi: 10.1086/373995
pubmed: 12599069
Luo MH, Hannemann H, Kulkarni AS, Schwartz PH, O’Dowd JM, Fortunato EA. Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol. 2010;84:3528–41. https://doi.org/10.1128/JVI.02161-09
doi: 10.1128/JVI.02161-09
pubmed: 20071566
pmcid: 2838134
Geder L, Lausch R, O’Neill F, Rapp F. Oncogenic transformation of human embryo lung cells by human cytomegalovirus. Science. 1976;192:1134–7. https://doi.org/10.1126/science.179143
doi: 10.1126/science.179143
pubmed: 179143
Nehme Z, Pasquereau S, Haidar Ahmad S, Coaquette A, Molimard C, Monnien F, et al. Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene. 2021;40:3030–46. https://doi.org/10.1038/s41388-021-01715-7
doi: 10.1038/s41388-021-01715-7
pubmed: 33767437
Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Investig. 2023;133:e163447. https://doi.org/10.1172/JCI163447
doi: 10.1172/JCI163447
pubmed: 36647828
pmcid: 9843050
Pantalone MR, Rahbar A, Söderberg-Naucler C, Stragliotto G. Valganciclovir as add-on to second-line therapy in patients with recurrent glioblastoma. Cancers. 2022;14:1958. https://doi.org/10.3390/cancers14081958
doi: 10.3390/cancers14081958
pubmed: 35454863
pmcid: 9030820
Daubon T, Hemadou A, Romero Garmendia I, Saleh M. Glioblastoma immune landscape and the potential of new immunotherapies. Front Immunol. 2020;11:585616. https://doi.org/10.3389/fimmu.2020.585616
doi: 10.3389/fimmu.2020.585616
pubmed: 33154756
pmcid: 7591769
Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74:3466–76. https://doi.org/10.1158/0008-5472.CAN-14-0296
doi: 10.1158/0008-5472.CAN-14-0296
pubmed: 24795429
Alcaniz J, Winkler L, Dahlmann M, Becker M, Orthmann A, Haybaeck J, et al. Clinically relevant glioblastoma patient-derived xenograft models to guide drug development and identify molecular signatures. Front Oncol. 2023;13:1129627. https://doi.org/10.3389/fonc.2023.1129627
doi: 10.3389/fonc.2023.1129627
pubmed: 37114125
pmcid: 10126369
Rossetto CC, Tarrant-Elorza M, Pari GS. Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) Monocytes and CD34 (+) Cells. PLoS Pathog. 2013;9:e1003366. https://doi.org/10.1371/journal.ppat.1003366
doi: 10.1371/journal.ppat.1003366
pubmed: 23717203
pmcid: 3662700
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. eBioMedicine. 2022;80:104056. https://doi.org/10.1016/j.ebiom.2022.104056
doi: 10.1016/j.ebiom.2022.104056
pubmed: 35596973
pmcid: 9121245
Battistelli C, Cicchini C, Santangelo L, Tramontano A, Grassi L, Gonzalez FJ, et al. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene. 2017;36:942–55. https://doi.org/10.1038/onc.2016.260
doi: 10.1038/onc.2016.260
pubmed: 27452518
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct oncogenic transcriptomes in human mammary epithelial cells infected with cytomegalovirus. Front Immunol. 2021;12:772160. https://doi.org/10.3389/fimmu.2021.772160
doi: 10.3389/fimmu.2021.772160
pubmed: 35003089
pmcid: 8727587
Daubon T, Guyon J, Raymond A-A, Dartigues B, Rudewicz J, Ezzoukhry Z, et al. The invasive proteome of glioblastoma revealed by laser-capture microdissection. Neuro-Oncol Adv. 2019;1:vdz029. https://doi.org/10.1093/noajnl/vdz029
doi: 10.1093/noajnl/vdz029
Guyon J, Andrique L, Pujol N, Røsland GV, Recher G, Bikfalvi A, et al. A 3D Spheroid Model for Glioblastoma. JoVE:60998. https://doi.org/10.3791/60998 (2020).
Bougnaud S, Golebiewska A, Oudin A, Keunen O, Harter PN, Mäder L, et al. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget. 2016;7:31955–71. https://doi.org/10.18632/oncotarget.7454
doi: 10.18632/oncotarget.7454
pubmed: 27049916
pmcid: 5077988
Daubon T, Léon C, Clarke K, Andrique L, Salabert L, Darbo E, et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun. 2019;10:1146. https://doi.org/10.1038/s41467-019-08480-y
doi: 10.1038/s41467-019-08480-y
pubmed: 30850588
pmcid: 6408502
Khan KA, Coaquette A, Davrinche C, Herbein G. Bcl-3-regulated transcription from major immediate-early promoter of human cytomegalovirus in monocyte-derived macrophages. J Immunol. 2009;182:7784–94. https://doi.org/10.4049/jimmunol.0803800
doi: 10.4049/jimmunol.0803800
pubmed: 19494302
Chen X, Guo Z-Q, Cao D, Chen Y, Chen J. MYC-mediated upregulation of PNO1 promotes glioma tumorigenesis by activating THBS1/FAK/Akt signaling. Cell Death Dis. 2021;12:244. https://doi.org/10.1038/s41419-021-03532-y
doi: 10.1038/s41419-021-03532-y
pubmed: 33664245
pmcid: 7933405
Yadav B, Pal S, Rubstov Y, Goel A, Garg M, Pavlyukov M, et al. LncRNAs associated with glioblastoma: From transcriptional noise to novel regulators with a promising role in therapeutics. Mol Ther - Nucleic Acids. 2021;24:728–42. https://doi.org/10.1016/j.omtn.2021.03.018
doi: 10.1016/j.omtn.2021.03.018
pubmed: 33996255
pmcid: 8099481
Ratliff M, Karimian-Jazi K, Hoffmann DC, Rauschenbach L, Simon M, Hai L, et al. Individual glioblastoma cells harbor both proliferative and invasive capabilities during tumor progression. Neuro-Oncol. 109. https://doi.org/10.1093/neuonc/noad109 (2023).
Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M. Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors–human leukocyte antigen ligand mismatch and activation receptor–ligand interactions. Front Immunol. 2018;9:1345. https://doi.org/10.3389/fimmu.2018.01345
doi: 10.3389/fimmu.2018.01345
pubmed: 29967607
pmcid: 6015895
El Baba R, Pasquereau S, Haidar Ahmad S, Diab-Assaf M, Herbein G. Oncogenic and stemness signatures of the high-risk HCMV strains in breast cancer progression. Cancers. 2022;14:4271. https://doi.org/10.3390/cancers14174271
doi: 10.3390/cancers14174271
pubmed: 36077806
pmcid: 9455011
Herbein G. High-risk oncogenic human cytomegalovirus. Viruses. 2022;14:2462. https://doi.org/10.3390/v14112462
doi: 10.3390/v14112462
pubmed: 36366560
pmcid: 9695668
Suvà M-L, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle J-C, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69:9211–8. https://doi.org/10.1158/0008-5472.CAN-09-1622
doi: 10.1158/0008-5472.CAN-09-1622
pubmed: 19934320
Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TFE, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood. 2008;112:4202–12. https://doi.org/10.1182/blood-2008-03-147645
doi: 10.1182/blood-2008-03-147645
pubmed: 18713946
Nie Z, Guo C, Das SK, Chow CC, Batchelor E, Simons SS, et al. Dissecting transcriptional amplification by MYC. eLife. 2020;9:e52483. https://doi.org/10.7554/eLife.52483
doi: 10.7554/eLife.52483
pubmed: 32715994
pmcid: 7384857
Ahani N, Shirkoohi R, Rokouei M, Alipour Eskandani M, Nikravesh A. Overexpression of enhancer of zeste human homolog 2 (EZH2) gene in human cytomegalovirus positive glioblastoma multiforme tissues. Med Oncol. 2014;31:252. https://doi.org/10.1007/s12032-014-0252-9
doi: 10.1007/s12032-014-0252-9
pubmed: 25294424
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507. https://doi.org/10.1038/ng.127
doi: 10.1038/ng.127
pubmed: 18443585
pmcid: 2912221
Lou Y-W, Wang P-Y, Yeh S-C, Chuang P-K, Li S-T, Wu C-Y, et al. Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci USA. 2014;111:2482–7. https://doi.org/10.1073/pnas.1400283111
doi: 10.1073/pnas.1400283111
pubmed: 24550271
pmcid: 3932869
Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, et al. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32. https://doi.org/10.1186/1471-2407-6-32
doi: 10.1186/1471-2407-6-32
pubmed: 16457706
pmcid: 1403792
Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, et al. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res. 2018;78:230–45. https://doi.org/10.1158/0008-5472.CAN-17-1961
doi: 10.1158/0008-5472.CAN-17-1961
pubmed: 29066510
Kondo S, Wakisaka N, Muramatsu M, Zen Y, Endo K, Murono S, et al. Epstein-Barr virus latent membrane protein 1 induces cancer stem/progenitor-like cells in nasopharyngeal epithelial cell lines. J Virol. 2011;85:11255–64. https://doi.org/10.1128/JVI.00188-11
doi: 10.1128/JVI.00188-11
pubmed: 21849440
pmcid: 3194961
Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J, Joseph K, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun. 2019;10:2541. https://doi.org/10.1038/s41467-019-10493-6
doi: 10.1038/s41467-019-10493-6
pubmed: 31186414
pmcid: 6559986
Sofroniew MV. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 2020;41:758–70. https://doi.org/10.1016/j.it.2020.07.004
doi: 10.1016/j.it.2020.07.004
pubmed: 32819810
pmcid: 7484257
Camacho CV, Todorova PK, Hardebeck MC, Tomimatsu N, Gil Del Alcazar CR, Ilcheva M, et al. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene. 2015;34:1064–72. https://doi.org/10.1038/onc.2014.29
doi: 10.1038/onc.2014.29
pubmed: 24632607
Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie X-J, et al. Radiation-Induced DNA damage cooperates with heterozygosity of TP53 and PTEN to generate high-grade gliomas. Cancer Res. 2019;79:3749–61. https://doi.org/10.1158/0008-5472.CAN-19-0680
doi: 10.1158/0008-5472.CAN-19-0680
pubmed: 31088835
pmcid: 6635038
Polito VA, Cristantielli R, Weber G, Del Bufalo F, Belardinilli T, Arnone CM, et al. Universal ready-to-use immunotherapeutic approach for the treatment of cancer: expanded and activated polyclonal γδ memory T cells. Front Immunol. 2019;10:2717. https://doi.org/10.3389/fimmu.2019.02717
doi: 10.3389/fimmu.2019.02717
pubmed: 31824502
pmcid: 6883509
Koenig J, Theobald SJ, Stripecke R. Modeling human cytomegalovirus in humanized mice for vaccine testing. Vaccines. 2020;8:89. https://doi.org/10.3390/vaccines8010089
doi: 10.3390/vaccines8010089
pubmed: 32079250
pmcid: 7157227
Crawford LB, Streblow DN, Hakki M, Nelson JA, Caposio P. Humanized mouse models of human cytomegalovirus infection. Curr Opin Virol. 2015;13:86–92. https://doi.org/10.1016/j.coviro.2015.06.006
doi: 10.1016/j.coviro.2015.06.006
pubmed: 26118890
pmcid: 4599783
Crawford LB, Tempel R, Streblow DN, Kreklywich C, Smith P, Picker LJ, et al. Human cytomegalovirus induces cellular and humoral virus-specific immune responses in humanized BLT mice. Sci Rep. 2017;7:937. https://doi.org/10.1038/s41598-017-01051-5
doi: 10.1038/s41598-017-01051-5
pubmed: 28428537
pmcid: 5430540
Vidone M, Alessandrini F, Marucci G, Farnedi A, De Biase D, Ricceri F, et al. Evidence of association of human papillomavirus with prognosis worsening in glioblastoma multiforme. Neuro-Oncol. 2014;16:298–302. https://doi.org/10.1093/neuonc/not140
doi: 10.1093/neuonc/not140
pubmed: 24285549
Zavala-Vega S, Palma-Lara I, Ortega-Soto E, Trejo-Solis C, De Arellano IT-R, Ucharima-Corona LE, et al. Role of Epstein-Barr virus in glioblastoma. Crit Rev Oncog. 2019;24:307–38. https://doi.org/10.1615/CritRevOncog.2019032655
doi: 10.1615/CritRevOncog.2019032655
pubmed: 32421988