Serial direct sodium removal in patients with heart failure and diuretic resistance.

Cardiorenal syndrome Diuretic Heart failure Sodium

Journal

European journal of heart failure
ISSN: 1879-0844
Titre abrégé: Eur J Heart Fail
Pays: England
ID NLM: 100887595

Informations de publication

Date de publication:
31 Mar 2024
Historique:
revised: 21 02 2024
received: 02 01 2024
accepted: 27 02 2024
medline: 1 4 2024
pubmed: 1 4 2024
entrez: 1 4 2024
Statut: aheadofprint

Résumé

Loop diuretics may exacerbate cardiorenal syndrome (CRS) in heart failure (HF). Direct sodium removal (DSR) using the peritoneal membrane, in conjunction with complete diuretic withdrawal, may improve CRS and diuretic resistance. Patients with HF requiring high-dose loop diuretics were enrolled in two prospective, single-arm studies: RED DESERT (n = 8 euvolaemic patients), and SAHARA (n = 10 hypervolaemic patients). Loop diuretics were withdrawn, and serial DSR was utilized to achieve and maintain euvolaemia. At baseline, participants required a median 240 mg (interquartile range [IQR] 200-400) oral furosemide equivalents/day, which was withdrawn in all participants during DSR (median time of DSR 4 weeks [IQR 4-6]). Diuretic response (queried by formal 40 mg intravenous furosemide challenge and 6 h urine sodium quantification) increased substantially from baseline (81 ± 37 mmol) to end of DSR (223 ± 71 mmol, p < 0.001). Median time to re-initiate diuretics was 87 days, and the median re-initiation dose was 8% (IQR 6-10%) of baseline. At 1 year, diuretic dose remained substantially below baseline (30 [IQR 7.5-40] mg furosemide equivalents/day). Multiple dimensions of kidney function such as filtration, uraemic toxin excretion, kidney injury, and electrolyte handling improved (p < 0.05 for all). HF-related biomarkers including N-terminal pro-B-type natriuretic peptide, carbohydrate antigen-125, soluble ST2, interleukin-6, and growth differentiation factor-15 (p < 0.003 for all) also improved. In patients with HF and diuretic resistance, serial DSR therapy with loop diuretic withdrawal was feasible and associated with substantial and persistent improvement in diuretic resistance and several cardiorenal parameters. If replicated in randomized controlled studies, DSR may represent a novel therapy for diuretic resistance and CRS. RED DESERT (NCT04116034), SAHARA (NCT04882358).

Identifiants

pubmed: 38556717
doi: 10.1002/ejhf.3196
doi:

Banques de données

ClinicalTrials.gov
['NCT04116034', 'NCT04882358']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Sequana Medical

Informations de copyright

© 2024 European Society of Cardiology.

Références

Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, et al.; American Heart Association Council on the Kidney in Cardiovascular Disease and Council on Clinical Cardiology. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the American Heart Association. Circulation 2019;139:e840–e878. https://doi.org/10.1161/CIR.0000000000000664
Jentzer JC, Bihorac A, Brusca SB, Del Rio‐Pertuz G, Kashani K, Kazory A, et al.; Critical Care Cardiology Working Group of the Heart Failure and Transplant Section Leadership Council. Contemporary management of severe acute kidney injury and refractory cardiorenal syndrome: JACC Council perspectives. J Am Coll Cardiol 2020;76:1084–1101. https://doi.org/10.1016/j.jacc.2020.06.070
Sarraf M, Masoumi A, Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol 2009;4:2013–2026. https://doi.org/10.2215/CJN.03150509
Martens P, Chen HH, Verbrugge FH, Testani JT, Mullens W, Tang WHW. Assessing intrinsic renal sodium avidity in acute heart failure: Implications in predicting and guiding decongestion. Eur J Heart Fail 2022;24:1978–1987. https://doi.org/10.1002/ejhf.2662
Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WHW, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol 2015;65:378–388. https://doi.org/10.1016/j.jacc.2014.11.025
Ellison DH, Welling P. Insights into salt handling and blood pressure. N Engl J Med 2021;385:1981–1993. https://doi.org/10.1056/NEJMra2030212
Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: Pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 2012;60:1031–1042. https://doi.org/10.1016/j.jacc.2012.01.077
Verbrugge FH, Guazzi M, Testani JM, Borlaug BA. Altered hemodynamics and end‐organ damage in heart failure: Impact on the lung and kidney. Circulation 2020;142:998–1012. https://doi.org/10.1161/CIRCULATIONAHA.119.045409
Felker GM, Ellison DH, Mullens W, Cox ZL, Testani JM. Diuretic therapy for patients with heart failure: JACC state‐of‐the‐art review. J Am Coll Cardiol 2020;75:1178–1195. https://doi.org/10.1016/j.jacc.2019.12.059
Ellison DH, Velazquez H, Wright FS. Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest 1989;83:113–126. https://doi.org/10.1172/JCI113847
ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure – pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015;12:184–192. https://doi.org/10.1038/nrcardio.2014.215
Hanberg JS, Rao V, Ter Maaten JM, Laur O, Brisco MA, Perry Wilson F, et al. Hypochloremia and diuretic resistance in heart failure: Mechanistic insights. Circ Heart Fail 2016;9:e003180. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003180
Testani JM, Hanberg JS, Cheng S, Rao V, Onyebeke C, Laur O, et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure. Circ Heart Fail 2016;9:e002370. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002370
Verbrugge FH, Nijst P, Dupont M, Penders J, Tang WH, Mullens W. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Heart Fail 2014;7:766–772. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001377
Kazory A. More efficient sodium removal by ultrafiltration compared to diuretics in acute heart failure; underexplored and overstated. Blood Purif 2016;42:279–281. https://doi.org/10.1159/000448391
Hodson DZ, Griffin M, Mahoney D, Raghavendra P, Ahmad T, Turner J, et al. Natriuretic response is highly variable and associated with 6‐month survival: Insights from the ROSE‐AHF trial. JACC Heart Fail 2019;7:383–391. https://doi.org/10.1016/j.jchf.2019.01.007
Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 2007;49:675–683. https://doi.org/10.1016/j.jacc.2006.07.073
Bart BA, Goldsmith SR, Lee KL, Givertz MM, O'Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 2012;367:2296–2304. https://doi.org/10.1056/NEJMoa1210357
Rao VS, Turner JM, Griffin M, Mahoney D, Asher J, Jeon S, et al. First‐in‐human experience with peritoneal direct sodium removal using a zero‐sodium solution: A new candidate therapy for volume overload. Circulation 2020;141:1043–1053. https://doi.org/10.1161/CIRCULATIONAHA.119.043062
Butt JH, Ibrahim W, Dewan P, Desai AS, Kober L, Prescott MF, et al. Urinary cGMP (cyclic guanosine monophosphate)/BNP (B‐type natriuretic peptide) ratio, sacubitril/valsartan, and outcomes in heart failure with reduced ejection fraction: An analysis of the PARADIGM‐HF trial. Circ Heart Fail 2023;16:e010111. https://doi.org/10.1161/CIRCHEARTFAILURE.122.010111
Felker GM, O'Connor CM, Braunwald E. Loop diuretics in acute decompensated heart failure: Necessary? Evil? A necessary evil? Circ Heart Fail 2009;2:56–62. https://doi.org/10.1161/CIRCHEARTFAILURE.108.821785
Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al.; NHLBI Heart Failure Clinical Research Network. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 2011;364:797–805. https://doi.org/10.1056/NEJMoa1005419
Mullens W, Damman K, Harjola VP, Mebazaa A, Brunner‐La Rocca HP, Martens P, et al. The use of diuretics in heart failure with congestion – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:137–155. https://doi.org/10.1002/ejhf.1369
Trulls JC, Morales‐Rull JL, Casado J, Carrera‐Izquierdo M, Snchez‐Marteles M, Conde‐Martel A, et al.; CLOROTIC Trial Investigators. Combining loop with thiazide diuretics for decompensated heart failure: The CLOROTIC trial. Eur Heart J 2023;44:411–421. https://doi.org/10.1093/eurheartj/ehac689
Cox ZL, Testani JM. Loop diuretic resistance complicating acute heart failure. Heart Fail Rev 2020;25:133–145. https://doi.org/10.1007/s10741‐019‐09851‐9
Biegus J, Zymlinski R, Testani J, Fudim M, Cox ZL, Guzik M, et al. The blunted loop diuretic response in acute heart failure is driven by reduced tubular responsiveness rather than insufficient tubular delivery. The role of furosemide urine excretion on diuretic and natriuretic response in acute heart failure. Eur J Heart Fail 2023;25:1323–1333. https://doi.org/10.1002/ejhf.2852
Ter Maaten JM, Rao VS, Hanberg JS, Perry Wilson F, Bellumkonda L, Assefa M, et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure. Eur J Heart Fail 2017;19:1014–1022. https://doi.org/10.1002/ejhf.757
Ellison DH, Felker GM. Diuretic treatment in heart failure. N Engl J Med 2017;377:1964–1975. https://doi.org/10.1056/NEJMra1703100
de Jonge JW, Knottnerus JA, van Zutphen WM, de Bruijne GA, Struijker Boudier HA. Short term effect of withdrawal of diuretic drugs prescribed for ankle oedema. BMJ 1994;308:511–513. https://doi.org/10.1136/bmj.308.6927.511
Middeke M, Pinter W, Jahn M, Holzgreve H. Diuretic‐induced edema. Dtsch Med Wochenschr 1990;115:216–219. https://doi.org/10.1055/s‐2008‐1064996
Schirmer K, Glaser M. Idiopathic and diuretic‐induced edema. Z Gesamte Inn Med 1989;44:540–542. PMID: 2588725.
Almeshari K, Ahlstrom NG, Capraro FE, Wilcox CS. A volume‐independent component to postdiuretic sodium retention in humans. J Am Soc Nephrol 1993;3:1878–1883. https://doi.org/10.1681/ASN.V3121878
Ter Maaten JM, Damman K, Hanberg JS, Givertz MM, Metra M, O'Connor CM, et al. Hypochloremia, diuretic resistance, and outcome in patients with acute heart failure. Circ Heart Fail 2016;9:e003109. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003109
Grodin JL, Sun JL, Anstrom KJ, Chen HH, Starling RC, Testani JM, et al. Implications of serum chloride homeostasis in acute heart failure (from ROSE‐AHF). Am J Cardiol 2017;119:78–83. https://doi.org/10.1016/j.amjcard.2016.09.014
Rossitto G, Mary S, Chen JY, Boder P, Chew KS, Neves KB, et al. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nat Commun 2020;11:4222. https://doi.org/10.1038/s41467‐020‐17820‐2
Titze J, Maillet A, Lang R, Gunga HC, Johannes B, Gauquelin‐Koch G, et al. Long‐term sodium balance in humans in a terrestrial space station simulation study. Am J Kidney Dis 2002;40:508–516. https://doi.org/10.1053/ajkd.2002.34908
Titze J, Shakibaei M, Schafflhuber M, Schulze‐Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol 2004;287:H203–H208. https://doi.org/10.1152/ajpheart.01237.2003
Olde Engberink RH, Rorije NM, van den Born BH, Vogt L. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int 2017;91:738–745. https://doi.org/10.1016/j.kint.2016.12.004
Bie P. Mechanisms of sodium balance: Total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018;315:R945–R962. https://doi.org/10.1152/ajpregu.00363.2017
Rossitto G, Touyz RM, Petrie MC, Delles C. Much ado about N… atrium: Modelling tissue sodium as a highly sensitive marker of subclinical and localized oedema. Clin Sci (Lond) 2018;132:2609–2613. https://doi.org/10.1042/CS20180575
Rossitto G, Delles C. Does excess tissue sodium storage regulate blood pressure? Curr Hypertens Rep 2022;24:115–122. https://doi.org/10.1007/s11906‐022‐01180‐x
Dovancescu S, Pellicori P, Mabote T, Torabi A, Clark AL, Cleland JGF. The effects of short‐term omission of daily medication on the pathophysiology of heart failure. Eur J Heart Fail 2017;19:643–649. https://doi.org/10.1002/ejhf.748
Mullens W, Martens P, Testani JM, Tang WHW, Skouri H, Verbrugge FH, et al. Renal effects of guideline‐directed medical therapies in heart failure: A consensus document from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022;24:603–619. https://doi.org/10.1002/ejhf.2471
Wilcox CS, Mitch WE, Kelly RA, Skorecki K, Meyer TW, Friedman PA, et al. Response of the kidney to furosemide. I. Effects of salt intake and renal compensation. J Lab Clin Med 1983;102:450–458.

Auteurs

Veena S Rao (VS)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.

Juan B Ivey-Miranda (JB)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Hospital de Cardiologia, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

Zachary L Cox (ZL)

Department of Pharmacy Practice, Lipscomb University College of Pharmacy, Nashville, TN, USA.
Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.

Julieta Moreno-Villagomez (J)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.

Daniela Ramos-Mastache (D)

Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.

Daniel Neville (D)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.

Natasha Balkcom (N)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.

Jennifer L Asher (JL)

Division of Comparative Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.

Lavanya Bellumkonda (L)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.

Tamar Bigvava (T)

Tbilisi Heart and Vascular Clinic, Tbilisi, Georgia.

Tamaz Shaburishvili (T)

Tbilisi Heart and Vascular Clinic, Tbilisi, Georgia.

Jozef Bartunek (J)

Cardiovascular Center, OLV Hospital, Aalst, Belgium.

F Perry Wilson (FP)

Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, CT, USA.

Fredrick Finkelstein (F)

Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.

Christopher Maulion (C)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.

Jeffrey M Turner (JM)

Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.

Jeffrey M Testani (JM)

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.

Classifications MeSH