Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania.

CRISPR/Cas9 efficiency kinetoplastids marker‐free protist ribonucleoprotein complex transfection universal

Journal

Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028

Informations de publication

Date de publication:
01 Apr 2024
Historique:
revised: 13 02 2024
received: 27 10 2023
accepted: 14 03 2024
medline: 1 4 2024
pubmed: 1 4 2024
entrez: 1 4 2024
Statut: aheadofprint

Résumé

Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.

Identifiants

pubmed: 38558208
doi: 10.1111/mmi.15256
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : CIHR
Pays : Canada

Informations de copyright

© 2024 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

Références

Allmann, S., Wargnies, M., Plazolles, N., Cahoreau, E., Biran, M., Morand, P. et al. (2021) Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biology, 19, e3001359.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S. et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.
Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J. & Gluenz, E. (2017) A CRISPR Cas9 high‐throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4, 170095.
Boutin, J., Rosier, J., Cappellen, D., Prat, F., Toutain, J., Pennamen, P. et al. (2021) CRISPR‐Cas9 globin editing can induce megabase‐scale copy‐neutral losses of heterozygosity in hematopoietic cells. Nature Communications, 12, 4922.
Bringaud, F., Biran, M., Millerioux, Y., Wargnies, M., Allmann, S. & Mazet, M. (2015) Combining reverse genetics and nuclear magnetic resonance‐based metabolomics unravels trypanosome‐specific metabolic pathways. Molecular Microbiology, 96, 917–926.
Coustou, V., Plazolles, N., Guegan, F. & Baltz, T. (2012) Sialidases play a key role in infection and anaemia in Trypanosoma congolense animal trypanosomiasis. Cellular Microbiology, 14, 431–445.
Crawford, E.D., Quan, J., Horst, J.A., Ebert, D., Wu, W. & Derisi, J.L. (2017) Plasmid‐free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733. PLoS ONE, 12, e0178163.
D'Astolfo, D.S., Pagliero, R.J., Pras, A., Karthaus, W.R., Clevers, H., Prasad, V. et al. (2015) Efficient intracellular delivery of native proteins. Cell, 161, 674–690.
Desquesnes, M., Sazmand, A., Gonzatti, M., Boulange, A., Bossard, G., Thevenon, S. et al. (2022) Diagnosis of animal trypanosomoses: proper use of current tools and future prospects. Parasites & Vectors, 15, 235.
Engstler, M. & Beneke, T. (2023) Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. eLife, 12, e85605.
Espada, C.R., Quilles, J.C., Jr., Albuquerque‐Wendt, A., Cruz, M.C., Beneke, T., Lorenzon, L.B. et al. (2021) Effective genome editing in Leishmania (Viannia) braziliensis stably expressing Cas9 and T7 RNA polymerase. Frontiers in Cellular and Infection Microbiology, 11, 772311.
Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K. et al. (2013) High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.
Gomaa, F., Li, Z.H., Beaudoin, D.J., Alzan, H., Girguis, P.R., Docampo, R. et al. (2022) CRISPR/Cas9‐induced disruption of Bodo saltans paraflagellar rod‐2 gene reveals its importance for cell survival. Environmental Microbiology, 24, 3051–3062.
Imamura, H., Downing, T., Van Den Broeck, F., Sanders, M.J., Rijal, S., Sundar, S. et al. (2016) Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife, 5, e12613.
Inoue, N., Otsu, K., Ferraro, D.M. & Donelson, J.E. (2002) Tetracycline‐regulated RNA interference in Trypanosoma congolense. Molecular and Biochemical Parasitology, 120, 309–313.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429–5433.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. & Charpentier, E. (2012) A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.
Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.S. (2014) Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24, 1012–1019.
Kolev, N.G., Tschudi, C. & Ullu, E. (2011) RNA interference in protozoan parasites: achievements and challenges. Eukaryotic Cell, 10, 1156–1163.
Kovarova, J., Novotna, M., Faria, J., Rico, E., Wallace, C., Zoltner, M. et al. (2022) CRISPR/Cas9‐based precision tagging of essential genes in bloodstream form African trypanosomes. Molecular and Biochemical Parasitology, 249, 111476.
Lander, N., Chiurillo, M.A., Storey, M., Vercesi, A.E. & Docampo, R. (2016) CRISPR/Cas9‐mediated endogenous C‐terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5‐trisphosphate receptor. The Journal of Biological Chemistry, 291, 25505–25515.
Lander, N., Chiurillo, M.A., Vercesi, A.E. & Docampo, R. (2017) Endogenous C‐terminal tagging by CRISPR/Cas9 in Trypanosoma cruzi. Bio‐Protocol, 7, e2299.
Lander, N., Li, Z.H., Niyogi, S. & Docampo, R. (2015) CRISPR/Cas9‐induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio, 6, e01012.
Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M. et al. (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology, 208, 44–53.
Lye, L.F., Owens, K.L., Jang, S., Marcus, J.E., Brettmann, E.A. & Beverley, S.M. (2022) An RNA interference (RNAi) toolkit and its utility for functional genetic analysis of Leishmania (Viannia). Genes (Basel), 14, 93.
Mannaert, A., Downing, T., Imamura, H. & Dujardin, J.C. (2012) Adaptive mechanisms in pathogens: universal aneuploidy in leishmania. Trends in Parasitology, 28, 370–376.
Millerioux, Y., Mazet, M., Bouyssou, G., Allmann, S., Kiema, T.R., Bertiaux, E. et al. (2018) De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: carbon source preferences and metabolic flux redistributions. PLoS Pathogens, 14, e1007116.
Minet, C., Chantal, I. & Berthier, D. (2023) Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR‐Cas9 ribonucleoproteins: proof of concept. Experimental Parasitology, 252, 108589.
Mojica, F.J., Diez‐Villasenor, C., Garcia‐Martinez, J. & Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174–182.
Monic, S.G., Lamy, A., Thonnus, M., Bizarra‐Rebelo, T., Bringaud, F., Smith, T.K. et al. (2022) A novel lipase with dual localisation in Trypanosoma brucei. Scientific Reports, 12, 4766.
Morel, C.A., Asencio, C., Blancard, C., Salin, B., Gontier, E., Duvezin‐Caubet, S. et al. (2023) Identification of a novel and ancestral machinery involved in mitochondrial membrane branching in Trypanosoma brucei. bioRxiv. Available from: https://doi.org/10.1101/2023.06.28.546890
Mozdy, A.D., Mccaffery, J.M. & Shaw, J.M. (2000) Dnm1p GTPase‐mediated mitochondrial fission is a multi‐step process requiring the novel integral membrane component Fis1p. The Journal of Cell Biology, 151, 367–380.
Ngo, H., Tschudi, C., Gull, K. & Ullu, E. (1998) Double‐stranded RNA induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of America, 95, 14687–14692.
Peng, D., Kurup, S.P., Yao, P.Y., Minning, T.A. & Tarleton, R.L. (2014) CRISPR‐Cas9‐mediated single‐gene and gene family disruption in Trypanosoma cruzi. MBio, 6, e02097‐14.
Peng, D. & Tarleton, R. (2015) EuPagdt: a web tool tailored to design CRISPR guide Rnas for eukaryotic pathogens. Microbial Genomics, 1, e000033.
Pineda, E., Thonnus, M., Mazet, M., Mourier, A., Cahoreau, E., Kulyk, H. et al. (2018) Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: analysis of metabolic adaptations on glycerol‐rich conditions. PLoS Pathogens, 14, e1007412.
Reis‐Cunha, J.L., Valdivia, H.O. & Bartholomeu, D.C. (2018) Gene and chromosomal copy number variations as an adaptive mechanism towards a parasitic lifestyle in trypanosomatids. Current Genomics, 19, 87–97.
Rico, E., Jeacock, L., Kovarova, J. & Horn, D. (2018) Inducible high‐efficiency CRISPR‐Cas9‐targeted gene editing and precision base editing in African trypanosomes. Scientific Reports, 8, 7960.
Rogers, M.B., Hilley, J.D., Dickens, N.J., Wilkes, J., Bates, P.A., Depledge, D.P. et al. (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21, 2129–2142.
Ryan, O.W., Skerker, J.M., Maurer, M.J., Li, X., Tsai, J.C., Poddar, S. et al. (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife, 3, e03703.
Shaw, S., Knusel, S., Hoenner, S. & Roditi, I. (2020) A transient CRISPR/Cas9 expression system for genome editing in Trypanosoma brucei. BMC Research Notes, 13, 268.
Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X. & Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84–88.
Soares Medeiros, L.C., South, L., Peng, D., Bustamante, J.M., Wang, W., Bunkofske, M. et al. (2017) Rapid, selection‐free, high‐efficiency genome editing in protozoan parasites using CRISPR‐Cas9 ribonucleoproteins. MBio, 8, e01788‐17.
Sollelis, L., Ghorbal, M., Macpherson, C.R., Martins, R.M., Kuk, N., Crobu, L. et al. (2015) First efficient CRISPR‐Cas9‐mediated genome editing in leishmania parasites. Cellular Microbiology, 17, 1405–1412.
Tounkara, M., Boulange, A., Thonnus, M., Bringaud, F., Belem, A.M.G., Bengaly, Z. et al. (2021) Novel protein candidates for serodiagnosis of African animal trypanosomosis: evaluation of the diagnostic potential of lysophospholipase and glycerol kinase from Trypanosoma brucei. PLoS Neglected Tropical Diseases, 15, e0009985.
Tovar, J., Wilkinson, S., Mottram, J.C. & Fairlamb, A.H. (1998) Evidence that trypanothione reductase is an essential enzyme in leishmania by targeted replacement of the tryA gene locus. Molecular Microbiology, 29, 653–660.
Wargnies, M., Bertiaux, E., Cahoreau, E., Ziebart, N., Crouzols, A., Morand, P. et al. (2018) Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathogens, 14, e1007502.
Zhang, W.W., Lypaczewski, P. & Matlashewski, G. (2017) Optimized CRISPR‐Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms. mSphere, 2, e00340‐16.
Zhang, W.W. & Matlashewski, G. (2015) CRISPR‐Cas9‐mediated genome editing in Leishmania donovani. MBio, 6, e00861.

Auteurs

Corinne Asencio (C)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Perrine Hervé (P)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Pauline Morand (P)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Quentin Oliveres (Q)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Chloé Alexandra Morel (CA)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Valérie Prouzet-Mauleon (V)

Univ. Bordeaux, CNRS/INSERM, TBMCore/CRISP'edit, UAR 3427/US005, Bordeaux, France.

Marc Biran (M)

Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France.

Sarah Monic (S)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Mélanie Bonhivers (M)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Derrick Roy Robinson (DR)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Marc Ouellette (M)

Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.

Loïc Rivière (L)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Frédéric Bringaud (F)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Emmanuel Tetaud (E)

Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France.

Classifications MeSH