Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
01 Apr 2024
Historique:
received: 01 08 2023
accepted: 19 03 2024
medline: 2 4 2024
pubmed: 2 4 2024
entrez: 1 4 2024
Statut: epublish

Résumé

Although heterogeneity of FAP+ Cancer-Associated Fibroblasts (CAF) has been described in breast cancer, their plasticity and spatial distribution remain poorly understood. Here, we analyze trajectory inference, deconvolute spatial transcriptomics at single-cell level and perform functional assays to generate a high-resolution integrated map of breast cancer (BC), with a focus on inflammatory and myofibroblastic (iCAF/myCAF) FAP+ CAF clusters. We identify 10 spatially-organized FAP+ CAF-related cellular niches, called EcoCellTypes, which are differentially localized within tumors. Consistent with their spatial organization, cancer cells drive the transition of detoxification-associated iCAF (Detox-iCAF) towards immunosuppressive extracellular matrix (ECM)-producing myCAF (ECM-myCAF) via a DPP4- and YAP-dependent mechanism. In turn, ECM-myCAF polarize TREM2+ macrophages, regulatory NK and T cells to induce immunosuppressive EcoCellTypes, while Detox-iCAF are associated with FOLR2+ macrophages in an immuno-protective EcoCellType. FAP+ CAF subpopulations accumulate differently according to the invasive BC status and predict invasive recurrence of ductal carcinoma in situ (DCIS), which could help in identifying low-risk DCIS patients eligible for therapeutic de-escalation.

Identifiants

pubmed: 38561380
doi: 10.1038/s41467-024-47068-z
pii: 10.1038/s41467-024-47068-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2806

Subventions

Organisme : Institut National Du Cancer (French National Cancer Institute)
ID : INCa-11692
Organisme : Institut National Du Cancer (French National Cancer Institute)
ID : INCa-16101

Informations de copyright

© 2024. The Author(s).

Références

Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).
pubmed: 28232471 pmcid: 5339682 doi: 10.1084/jem.20162024
Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).
pubmed: 30514914 pmcid: 6279758 doi: 10.1038/s41467-018-07582-3
Cremasco, V. et al. FAP delineates heterogeneous and functionally divergent stromal cells in immune-excluded breast tumors. Cancer Immunol. Res. 6, 1472–1485 (2018).
pubmed: 30266714 pmcid: 6597261 doi: 10.1158/2326-6066.CIR-18-0098
Givel, A. M. et al. miR200-regulated CXCL12beta promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat. Commun. 9, 1056 (2018).
pubmed: 29535360 pmcid: 5849633 doi: 10.1038/s41467-018-03348-z
Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFbeta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).
pubmed: 30366930 doi: 10.1158/2159-8290.CD-18-0710
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).
pubmed: 31197017 pmcid: 6727976 doi: 10.1158/2159-8290.CD-19-0094
Neuzillet, C. et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J. Pathol. 248, 51–65 (2019).
pubmed: 30575030 pmcid: 6492001 doi: 10.1002/path.5224
Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).
pubmed: 31699795 doi: 10.1158/2159-8290.CD-19-0644
Friedman, G. et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+) and PDPN(+) CAFs to clinical outcome. Nat. Cancer 1, 692–708 (2020).
pubmed: 35122040 doi: 10.1038/s43018-020-0082-y
Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).
pubmed: 32434947 doi: 10.1158/2159-8290.CD-19-1384
Sebastian, A. et al. Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers 12, 1307 (2020).
pubmed: 32455670 pmcid: 7281266 doi: 10.3390/cancers12051307
Hu, H. et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 39, 1531–1547.e10 (2021).
pubmed: 34624218 pmcid: 8578451 doi: 10.1016/j.ccell.2021.09.003
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).
pubmed: 34493872 pmcid: 9044823 doi: 10.1038/s41588-021-00911-1
Foster, D. S. et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 40, 1392–1406.e7 (2022).
pubmed: 36270275 pmcid: 9669239 doi: 10.1016/j.ccell.2022.09.015
Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).
pubmed: 37463917 pmcid: 10354071 doi: 10.1038/s41467-023-39762-1
Jain, S. et al. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. J. Clin. Invest. 133, e147087 (2023).
pubmed: 36856115 pmcid: 9974099 doi: 10.1172/JCI147087
Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479.e10 (2018).
pubmed: 29455927 doi: 10.1016/j.ccell.2018.01.011
Pelon, F. et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11, 404 (2020).
pubmed: 31964880 pmcid: 6972713 doi: 10.1038/s41467-019-14134-w
Bonneau, C. et al. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res. 22, 76 (2020).
pubmed: 32665033 pmcid: 7362513 doi: 10.1186/s13058-020-01311-9
Hosaka, K. et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc. Natl Acad. Sci. USA 113, E5618–E5627 (2016).
pubmed: 27608497 pmcid: 5035870 doi: 10.1073/pnas.1608384113
Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).
pubmed: 18438415 doi: 10.1038/nm1764
Toullec, A. et al. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med. 2, 211–230 (2010).
pubmed: 20535745 pmcid: 3377319 doi: 10.1002/emmm.201000073
Kwa, M. Q., Herum, K. M. & Brakebusch, C. Cancer-associated fibroblasts: how do they contribute to metastasis? Clin. Exp. Metastasis 36, 71–86 (2019).
pubmed: 30847799
Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).
pubmed: 31406163 pmcid: 6691013 doi: 10.1038/s41467-019-10968-6
Hilmi, M., Nicolle, R., Bousquet, C. & Neuzillet, C. Cancer-associated fibroblasts: accomplices in the tumor immune evasion. Cancers 12, 2969 (2020).
pubmed: 33066357 pmcid: 7602282 doi: 10.3390/cancers12102969
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
pubmed: 31980749 pmcid: 7046529 doi: 10.1038/s41568-019-0238-1
Jungwirth, U. et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat. Commun. 12, 3516 (2021).
pubmed: 34112782 pmcid: 8192501 doi: 10.1038/s41467-021-23583-1
Wang, Z. et al. Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark. Res. 9, 47 (2021).
pubmed: 34112258 pmcid: 8194104 doi: 10.1186/s40364-021-00305-9
Denton, A. E., Roberts, E. W., Linterman, M. A. & Fearon, D. T. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc. Natl Acad. Sci. USA 111, 12139–12144 (2014).
pubmed: 25092322 pmcid: 4143042 doi: 10.1073/pnas.1412910111
Takahashi, H. et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol. Immunother. 64, 1407–1417 (2015).
pubmed: 26201938 doi: 10.1007/s00262-015-1742-0
Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).
pubmed: 27272654 pmcid: 4899869 doi: 10.1038/ncomms11762
Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).
pubmed: 27216177 doi: 10.1158/0008-5472.CAN-15-2973
Zhang, Y. & Ertl, H. C. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget 7, 23282–23299 (2016).
pubmed: 26943036 pmcid: 5029626 doi: 10.18632/oncotarget.7818
Cohen, N. et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene 36, 4457–4468 (2017).
pubmed: 28368410 pmcid: 5507301 doi: 10.1038/onc.2017.65
Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).
pubmed: 32790115 pmcid: 7527929 doi: 10.15252/embj.2019104063
Freeman, P. & Mielgo, A. Cancer-associated fibroblast mediated inhibition of CD8+ cytotoxic T cell accumulation in tumours: mechanisms and therapeutic opportunities. Cancers 12, 2687 (2020).
pubmed: 32967079 pmcid: 7564636 doi: 10.3390/cancers12092687
Baker, A. T., Abuwarwar, M. H., Poly, L., Wilkins, S. & Fletcher, A. L. Cancer-associated fibroblasts and T cells: from mechanisms to outcomes. J. Immunol. 206, 310–320 (2021).
pubmed: 33397745 doi: 10.4049/jimmunol.2001203
Gorchs, L. & Kaipe, H. Interactions between cancer-associated fibroblasts and T cells in the pancreatic tumor microenvironment and the role of chemokines. Cancers 13, 2995 (2021).
pubmed: 34203869 pmcid: 8232575 doi: 10.3390/cancers13122995
Magagna, I. et al. CD73-mediated immunosuppression is linked to a specific fibroblast population that paves the way for new therapy in breast cancer. Cancers 13, 5878 (2021).
pubmed: 34884993 pmcid: 8657241 doi: 10.3390/cancers13235878
Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).
pubmed: 24277834 pmcid: 3864274 doi: 10.1073/pnas.1320318110
Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).
pubmed: 29443960 pmcid: 6028240 doi: 10.1038/nature25501
Krishnamurty, A. T. et al. LRRC15(+) myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).
pubmed: 36171287 pmcid: 9630141 doi: 10.1038/s41586-022-05272-1
Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).
pubmed: 35365629 pmcid: 8976074 doi: 10.1038/s41467-022-29366-6
Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors. Cancer Discov. 12, 2606–2625 (2022).
pubmed: 36027053 pmcid: 9633420 doi: 10.1158/2159-8290.CD-21-1714
Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673.e7 (2022).
pubmed: 35523176 pmcid: 9197998 doi: 10.1016/j.ccell.2022.04.011
Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
pubmed: 27365449 doi: 10.1126/science.aaf2403
Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).
pubmed: 31959985 doi: 10.1038/s41586-019-1876-x
Schurch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).
pubmed: 32763154 pmcid: 7479520 doi: 10.1016/j.cell.2020.07.005
Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).
pubmed: 34650042 pmcid: 8516894 doi: 10.1038/s41467-021-26271-2
Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).
pubmed: 34767762 pmcid: 8728963 doi: 10.1016/j.ccell.2021.10.009
Phillips, D. et al. Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat. Commun. 12, 6726 (2021).
pubmed: 34795254 pmcid: 8602403 doi: 10.1038/s41467-021-26974-6
Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).
pubmed: 35365796 doi: 10.1038/s41571-022-00619-z
Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022).
pubmed: 35063072 pmcid: 8792442 doi: 10.1016/j.cell.2021.12.023
Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).
pubmed: 33981032 doi: 10.1038/s41586-021-03549-5
Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).
pubmed: 33958794 doi: 10.1038/s41591-021-01323-8
Pal, B. et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J. 40, e107333 (2021).
pubmed: 33950524 pmcid: 8167363 doi: 10.15252/embj.2020107333
Stuart, T. et al. Comprehensive Integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
pubmed: 30890159 pmcid: 6425583 doi: 10.1186/s13059-019-1663-x
Chen, H. et al. Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. Nat. Commun. 10, 1903 (2019).
pubmed: 31015418 pmcid: 6478907 doi: 10.1038/s41467-019-09670-4
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
pubmed: 30787437 pmcid: 6434952 doi: 10.1038/s41586-019-0969-x
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
pubmed: 32747759 doi: 10.1038/s41587-020-0591-3
Biffi, G. & Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 101, 147–176 (2021).
pubmed: 32466724 doi: 10.1152/physrev.00048.2019
Ohm, B., Moneke, I. & Jungraithmayr, W. Targeting cluster of differentiation 26/dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. Br. J. Pharmacol. 40, 661–671 (2022).
Zhang, K. W. et al. Insight into the role of DPP-4 in fibrotic wound healing. Biomed. Pharmacother. 151, 113143 (2022).
pubmed: 35643071 doi: 10.1016/j.biopha.2022.113143
Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019).
pubmed: 31340985 pmcid: 6673718 doi: 10.1101/gr.240663.118
Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).
pubmed: 33603203 doi: 10.1038/s41587-021-00830-w
Dong, R. & Yuan, G. C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021).
pubmed: 33971932 pmcid: 8108367 doi: 10.1186/s13059-021-02362-7
Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).
pubmed: 35577954 doi: 10.1038/s41592-022-01480-9
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743 pmcid: 6435756 doi: 10.1038/s41598-019-41695-z
Polanski, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).
pubmed: 31400197 doi: 10.1093/bioinformatics/btz625
Coutant, A. et al. Spatial transcriptomics reveal pitfalls and opportunities for the detection of rare high-plasticity breast cancer subtypes. Lab. Invest. 103, 100258 (2023).
pubmed: 37813278 doi: 10.1016/j.labinv.2023.100258
Chu, T., Wang, Z., Pe’er, D. & Danko, C. G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505–517 (2022).
pubmed: 35469013 pmcid: 9046084 doi: 10.1038/s43018-022-00356-3
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522 pmcid: 7889871 doi: 10.1038/s41467-021-21246-9
Shao, X. et al. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat. Commun. 13, 4429 (2022).
pubmed: 35908020 pmcid: 9338929 doi: 10.1038/s41467-022-32111-8
Strand, S. H. et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell 40, 1521–1536.e7 (2022).
pubmed: 36400020 pmcid: 9772081 doi: 10.1016/j.ccell.2022.10.021
Grunwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).
pubmed: 34644529 doi: 10.1016/j.cell.2021.09.022
Ligorio, M. et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 178, 160–175.e27 (2019).
pubmed: 31155233 pmcid: 6697165 doi: 10.1016/j.cell.2019.05.012
Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022).
pubmed: 35437329 pmcid: 7612730 doi: 10.1038/s41588-022-01041-y
Martin, K. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7, 12502 (2016).
pubmed: 27535340 pmcid: 4992158 doi: 10.1038/ncomms12502
Bobowski-Gerard, M. et al. Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis. Nat. Commun. 13, 5324 (2022).
pubmed: 36088459 pmcid: 9464213 doi: 10.1038/s41467-022-33063-9
Puerta Cavanzo, N. et al. Verteporfin ameliorates fibrotic aspects of Dupuytren’s disease nodular fibroblasts irrespective the activation state of the cells. Sci. Rep. 12, 13940 (2022).
pubmed: 35977978 pmcid: 9386017 doi: 10.1038/s41598-022-18116-9
Houthuijzen, J. M. et al. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat. Commun. 14, 183 (2023).
pubmed: 36635273 pmcid: 9837080 doi: 10.1038/s41467-023-35793-w
Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).
pubmed: 31023895 pmcid: 6816238 doi: 10.1126/science.aav2501
Shen, H. et al. The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis. Nat. Commun. 13, 6030 (2022).
pubmed: 36229481 pmcid: 9562301 doi: 10.1038/s41467-022-33800-0
Mhaidly, R. & Mechta-Grigoriou, F. Inflammatory fibroblasts make rectal cancer resistant to radiation therapy. Cancer Cell 40, 122–124 (2022).
pubmed: 35120597 doi: 10.1016/j.ccell.2022.01.005
Nicolas, A. M. et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell 40, 168–184.e13 (2022).
pubmed: 35120600 doi: 10.1016/j.ccell.2022.01.004
Nalio Ramos, R. et al. Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022).
pubmed: 35325594 doi: 10.1016/j.cell.2022.02.021
McNally, S. & Stein, T. Overview of mammary gland development: a comparison of mouse and human. Methods Mol. Biol. 1501, 1–17 (2017).
pubmed: 27796946 doi: 10.1007/978-1-4939-6475-8_1
Toss, M. S. et al. Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast. Mod. Pathol. 31, 1226–1236 (2018).
pubmed: 29559742 doi: 10.1038/s41379-018-0040-8
Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 36, 2105–2122 (2018).
pubmed: 29846122 doi: 10.1200/JCO.2018.77.8738
Goldhirsch, A. et al. Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 22, 1736–1747 (2011).
pubmed: 21709140 pmcid: 3144634 doi: 10.1093/annonc/mdr304
Crowell, H. L. et al. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).
pubmed: 33257685 pmcid: 7705760 doi: 10.1038/s41467-020-19894-4
Albergante, L. et al. Robust and scalable learning of complex intrinsic dataset geometry via ElPiGraph. Entropy 22, 296 (2020).
pubmed: 33286070 pmcid: 7516753 doi: 10.3390/e22030296
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).
pubmed: 33780170 pmcid: 8152575 doi: 10.1002/cpz1.90
Gueguen, P. et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8(+) T cell populations in lung cancer. Sci. Immunol. 6, eabd5778 (2021).
pubmed: 33514641 doi: 10.1126/sciimmunol.abd5778
Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82, 3291–3306 (2022).
pubmed: 35862581 doi: 10.1158/0008-5472.CAN-22-1427
Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).
pubmed: 32086381 pmcid: 7219211 doi: 10.1126/sciimmunol.aay6017
Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40, 318–334.e19 (2022).
pubmed: 35120598 doi: 10.1016/j.ccell.2022.01.002
Geldhof, V. et al. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat. Commun. 13, 5511 (2022).
pubmed: 36127427 pmcid: 9489707 doi: 10.1038/s41467-022-33052-y
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879 pmcid: 5715110 doi: 10.1038/s41598-017-17204-5
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408 pmcid: 4053844 doi: 10.1186/gb-2013-14-4-r36
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923

Auteurs

Hugo Croizer (H)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Rana Mhaidly (R)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Yann Kieffer (Y)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Geraldine Gentric (G)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Lounes Djerroudi (L)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.
Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France.

Renaud Leclere (R)

Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France.

Floriane Pelon (F)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Catherine Robley (C)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Mylene Bohec (M)

Institut Curie, PSL Research University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France.
Institut Curie, PSL Research University, Single Cell Initiative, 75005, Paris, France.

Arnaud Meng (A)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Didier Meseure (D)

Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France.

Emanuela Romano (E)

Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, 26, Rue d'Ulm, F-75248, Paris, France.

Sylvain Baulande (S)

Institut Curie, PSL Research University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France.
Institut Curie, PSL Research University, Single Cell Initiative, 75005, Paris, France.

Agathe Peltier (A)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.

Anne Vincent-Salomon (A)

Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France.

Fatima Mechta-Grigoriou (F)

Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France. fatima.mechta-grigoriou@curie.fr.
Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France. fatima.mechta-grigoriou@curie.fr.

Classifications MeSH