Insight into the phylogeny and responses of species from the genus Sergia (Campanulaceae) to the climate changes predicted for the Mountains of Central Asia (a world biodiversity hotspot).
Bell-flowers
Climate warming
DArT sequencing
Genome-wide analysis
Niche modelling
Phylogeny
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
01 Apr 2024
01 Apr 2024
Historique:
received:
13
04
2023
accepted:
20
03
2024
medline:
2
4
2024
pubmed:
2
4
2024
entrez:
2
4
2024
Statut:
epublish
Résumé
Together with other elevated areas, the Mountains of Central Asia are significantly threatened by ongoing climate change. The presence of refuges during the glaciations makes the region extremely rich in species, especially endemic ones. However, the limited potential for colonisation of other habitats makes rocky-related species with 'island-like' distribution, particularly vulnerable to climate change. To understand the processes underlying species response to climate warming, we assessed differences in ecological niches and phylogenetic relationship of two geographically disjunctive alpine species belonging to the genus Sergia. The taxa are considered Tertiary relicts, endemic to the Tian Shan and Pamir-Alai Mountains. To illustrate range dynamics and differences in occupied niches of Sergia species, we used Ecological Niche Modelling of current and future distribution. Whereas, to reconstruct the phylogenetic relationship within and between Sergia and other related Campanulaceae species from the region we used molecular data (ITS, cpDNA, DArTseq-derived SNPs). The results reveal that the genus Sergia is a polyphyletic group, and its representatives differ geographically, ecologically and genetically. Both S. regelii and S. sewerzowii constitute a common clade with Asyneuma group, however, S. sewerzowii is more closely related to Campanula alberti (a species that has never previously been considered closely related to the genus Asyneuma or Sergia) than to S. regelii. Sergia sewerzowii is adapted to lower elevations with higher temperatures, while S. regelii prefers higher elevations with lower temperatures. The future distribution models demonstrate a dramatic loss of S. regelii range with a shift to suitable habitats in higher elevations, while the potential range of S. sewerzowii increases and shifts to the north. This study shows that S. regelii and S. sewerzowii have a long and independent evolution history. Sergia regelii and S. sewerzowii significantly differ in realised niches. These differences are mirrored in the response of the studied endemics to future climate warming. As suitable habitats shrink, rapid changes in distribution can lead to species' range loss, which is also directly related to declines in genetic variability. The outcomes of this paper will help to more precisely assess the impact of climate changes on rocky-related plant species found in this world's biodiversity hotspot.
Sections du résumé
BACKGROUND
BACKGROUND
Together with other elevated areas, the Mountains of Central Asia are significantly threatened by ongoing climate change. The presence of refuges during the glaciations makes the region extremely rich in species, especially endemic ones. However, the limited potential for colonisation of other habitats makes rocky-related species with 'island-like' distribution, particularly vulnerable to climate change. To understand the processes underlying species response to climate warming, we assessed differences in ecological niches and phylogenetic relationship of two geographically disjunctive alpine species belonging to the genus Sergia. The taxa are considered Tertiary relicts, endemic to the Tian Shan and Pamir-Alai Mountains. To illustrate range dynamics and differences in occupied niches of Sergia species, we used Ecological Niche Modelling of current and future distribution. Whereas, to reconstruct the phylogenetic relationship within and between Sergia and other related Campanulaceae species from the region we used molecular data (ITS, cpDNA, DArTseq-derived SNPs).
RESULTS
RESULTS
The results reveal that the genus Sergia is a polyphyletic group, and its representatives differ geographically, ecologically and genetically. Both S. regelii and S. sewerzowii constitute a common clade with Asyneuma group, however, S. sewerzowii is more closely related to Campanula alberti (a species that has never previously been considered closely related to the genus Asyneuma or Sergia) than to S. regelii. Sergia sewerzowii is adapted to lower elevations with higher temperatures, while S. regelii prefers higher elevations with lower temperatures. The future distribution models demonstrate a dramatic loss of S. regelii range with a shift to suitable habitats in higher elevations, while the potential range of S. sewerzowii increases and shifts to the north.
CONCLUSIONS
CONCLUSIONS
This study shows that S. regelii and S. sewerzowii have a long and independent evolution history. Sergia regelii and S. sewerzowii significantly differ in realised niches. These differences are mirrored in the response of the studied endemics to future climate warming. As suitable habitats shrink, rapid changes in distribution can lead to species' range loss, which is also directly related to declines in genetic variability. The outcomes of this paper will help to more precisely assess the impact of climate changes on rocky-related plant species found in this world's biodiversity hotspot.
Identifiants
pubmed: 38561665
doi: 10.1186/s12870-024-04938-4
pii: 10.1186/s12870-024-04938-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
228Informations de copyright
© 2024. The Author(s).
Références
Pacifici M, Foden W, Visconti P, Watson J, Butchart S, Kovacs K, et al. Assessing species vulnerability to climate change. Nat Clim Chang. 2015;5:215–24.
doi: 10.1038/nclimate2448
Urban MC. Accelerating extinction risk from climate change. Science. 2015;348(6234):571–3.
pubmed: 25931559
doi: 10.1126/science.aaa4984
Bellard C, Bertelsmeier C, Leadley P, Wilfried T, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett. 2012;15:365–77.
pubmed: 22257223
pmcid: 3880584
doi: 10.1111/j.1461-0248.2011.01736.x
Seddon AWR, Macias-fauria M, Long PR, Benz D, Willis KJ, Seddon AWR. Sensitivity of global terrestrial ecosystems to climate variability. Nature. 2016;531(7593):229–32.
pubmed: 26886790
doi: 10.1038/nature16986
Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Baran P, Rosa M, et al. Continent-wide response of mountain vegetation to climate change. Nat Clim Chang. 2012;2:111–5.
doi: 10.1038/nclimate1329
Vintsek L, Klichowska E, Nowak A, Nobis M. Genetic differentiation, demographic history and distribution models of high alpine endemic vicariants outline the response of species to predicted climate changes in a Central Asian biodiversity hotspot. Ecol Indic. 2022;144:109419.
doi: 10.1016/j.ecolind.2022.109419
Nobis M, Klichowska E, Vintsek L, Wróbel A, Nobis A, Zalewska-Gałosz J, et al. Evolutionary response of cold-adapted chasmophytic plants to Quaternary climatic oscillations in the Mountains of Central Asia (a world hotspot of biodiversity). Divers Distrib. 2023;29:1458–77.
doi: 10.1111/ddi.13773
Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science. 2008;322(5899):258–61.
pubmed: 18845754
doi: 10.1126/science.1162547
Mittermeier CG, Turner WR, Larsen FW, Brooks TM, Gascon C. Global biodiversity conservation: The critical role of hotspots. In: Zachos FE, Habel JC, editors. Biodiversity hotspots: distribution and protection of priority conservation areas. Berlin: Springer-Verlag; 2011. p. 3–22.
doi: 10.1007/978-3-642-20992-5_1
Ajjur SB, Al-Ghamdi SG. Global hotspots for future absolute temperature extremes from CMIP6 models. Earth Sp Sci. 2021;8(9):e2021EA001817.
doi: 10.1029/2021EA001817
Fay M, Block RI, Ebinger J. Adapting to climate change in Eastern Europe and Central Asia. Washington: World Bank Publications; 2010.
Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Schneeweiss GM. Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Sci Rep. 2018;8:10345.
pubmed: 29985437
pmcid: 6037708
doi: 10.1038/s41598-018-28504-9
Perrigo A, Hoorn C, Antonelli A. Why mountains matter for biodiversity. J Biogeogr. 2020;47(2):315–25.
doi: 10.1111/jbi.13731
Nobis M, Gudkova PD, Nowak A, Sawicki J, Nobis A. A synopsis of the genus Stipa (Poaceae) in Middle Asia, including a key to species identification, an annotated checklist, and phytogeographic analyses. Ann Missouri Bot Gard. 2020;105:1–63.
doi: 10.3417/2019378
Safarov N. First National Report on Biodiversity Conservation. Dushanbe: Convention on Biological Diversity; 2003.
Piñar Fuentes JC, Cano-Ortiz A, Musarella CM, Pinto-Gomes C, Spampinato G, Cano E. Rupicolous habitats of interest for conservation in the central-southern Iberian peninsula. Plant Sociol. 2017;54(2):29–42.
Nowak A, Nowak S, Nobis M. Distribution patterns, ecological characteristic and conservation status of endemic plants of Tadzhikistan – A global hotspot of diversity. J Nat Conserv. 2011;19:296–305.
doi: 10.1016/j.jnc.2011.05.003
Nowak A, Świerszcz S, Nowak S, Plášek V, Nobis A, Klichowska E, et al. Diversity, distribution, and classification of chasmophytic vegetation in the central Asian biodiversity hotspot: alpine belt of the Eastern Pamir-Alai and Western Tian Shan mountains. Acta Soc Bot Pol. 2022;91(1):911.
doi: 10.5586/asbp.911
Agakhanjanz O, Breckle SW. Plant diversity and endemism in high mountains of Central Asia, the Caucasus and Siberia. In: Korner C, Spehn E, editors. Mountain biodiversity – A global assessment. Boca Raton: Parthenon Publication Group; 2002. p. 117–27.
Meier H, Braun-Blanquet J. Classe des asplenietales rupestres, groupements rupicoles. Prodr Pflanzenges. 1934;2:1–47.
Mucina L. Asplenietea trichomanis. In: Grabherr G, Mucina L, editors. Die Pflanzengesellschaften Österreichs Teil II Natürliche waldfreie Vegetation. Jena, Stuttgart: Fischer Verlag; 1993. p. 241–75.
Nobis M, Nowak A, Nobis A. Stipa zeravshanica sp nov (Poaceae), an endemic species from rocky walls of the western Pamir Alai Mountains (middle Asia). Nord J Bot. 2013;31:666–75.
doi: 10.1111/j.1756-1051.2013.00184.x
Nowak A, Nowak S, Nobis M, Nobis A. Vegetation of rock clefts and ledges in the Pamir Alai Mts, Tajikistan (Middle Asia). Cent Eur J Biol. 2014;9(4):444–60.
Nowak A, Nowak S, Nobis M, Nobis A. Vegetation of rock crevices of the montane and colline zones in the Pamir-Alai and Tian Shan Mts in Tajikistan (Middle Asia). Plant Biosyst. 2014;148(6):1199–210.
doi: 10.1080/11263504.2014.941035
Nowak A, Nowak S, Nobis M, Nobis A. Vegetation of solid rock faces and fissures of the alpine and subnival zone in the Pamir Alai Mountains (Tajikistan, Middle Asia). Phytocoenologia. 2014;44:81–101.
doi: 10.1127/0340-269X/2014/0044-0573
Clavel J, Julliard R, Devictor V. Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ. 2011;9:222–8.
doi: 10.1890/080216
Eddie WMM, Shulkina T, Gaskin J, Haberle RC, Jansen RK. Phylogeny of Campanulaceae s. str. inferred from ITS sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard. 2003;90(4):554–75.
doi: 10.2307/3298542
Sales F, Hedge IC. Genneric endemism in South-West Asia: an overview. Rostaniha. 2013;14(1):22–35.
Ibragimov AJ. Endem types of mountainous Central Asia Province in Kuhitang floor. Texas J Multidiscip Stud. 2021;2:9–11.
Khassanov F, Kodirov UH. Campanulaceae. In: Sennikov AN, editor. Flora of Uzbekistan. Toshkent: Navroz; 2017. p. 135–53.
Conser ME, Raubeson LA, Jansen RK. Chloroplast DNA rearrangements in campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol. 2004;4:27.
doi: 10.1186/1471-2148-4-27
Roquet C, Sáez L, Aldasoro JJ, Susanna A, Alarcón ML, Garcia-Jacas N. Natural delineation, molecular phylogeny and floral evolution in Campanula. Syst Bot. 2008;33:203–17.
doi: 10.1600/036364408783887465
Lakušić D, Eddie EMM, Lulezim S, Lazarević M, Barina Z. The evolving “fate” of Asyneuma comosiforme: validation of Hayekia, a new monotypic genus of Campanulaceae from Albania Willdenowia. Willdenowia. 2019;49(1):81–93.
doi: 10.3372/wi.49.49110
Jones KE, Korotkova N, Petersen J, Henning T, Borsch T, Kilian N. Dynamic diversification history with rate upshifts in Holarctic bell-flowers (Campanula and allies). Cladistics. 2017;6:637–66.
doi: 10.1111/cla.12187
Xu C, Hong DY. Phylogenetic analyses confirm polyphyly of the genus Campanula (Campanulaceae s. str.), leading to a proposal for generic reappraisal. J Syst Evol. 2021;59(3):475–89.
doi: 10.1111/jse.12586
Hewitt GM. Quaternary phylogeography: the roots of hybrid zones. Genetica. 2011;139(5):617–38.
pubmed: 21234647
doi: 10.1007/s10709-011-9547-3
Wróbel A, Klichowska E, Nowak A, Nobis M. Alpine extremophytes in evolutionary turmoil: complex diversification patterns and demographic responses of a halophilic grass in a central Asian biodiversity hotspot. Syst Biol. 2024. https://doi.org/10.1093/sysbio/syad073 .
doi: 10.1093/sysbio/syad073
Abramowski U, Bergau A, Seebach D, Zech R, Glaser B, Sosin P, et al. Pleistocene glaciations of Central Asia: results from
doi: 10.1016/j.quascirev.2005.10.003
Kuhle M. The Glaciation of High Asia: from the last ice age to the present. Cham: Springer; 2018.
Raduła M, Świerszcz S, Nobis A, Nowak A. Palaeoclimate has a major effect on the diversity of endemic species in the hotspot of mountain biodiversity in Tajikistan. Sci Rep. 2021;11:18684.
pubmed: 34548515
pmcid: 8455614
doi: 10.1038/s41598-021-98027-3
Abdullaeva MN, Adylov TA, Filimonova ZN, Kovalevskaja SS, Levizev IO, Li AD, et al. Campanulaceae. In: Adylov NA, editor., et al., Key of Middle Asia flora IX. “FAN” Uzbek SR: Tashkent; 1987. p. 351–60.
Victorov VP. Taxonomic synopsis of Campanula L. (Campanulaceae) in Russia and adjacent countries. Novosti Sist Vyssh Rast. 2002;34:197–234.
Vasileva AN, Gamaunova AP, Dmitryeva AA, Goloskokov VP, Zayceva LG, Karmysheva NH. Campanulaceae. In: Pavlov NV, editor. Flora of Kazakhstan VIII. Alma-Ata: Nauka; 1965. p. 288–302.
Tojibaev K, Sennikov A, Lazkov GA, Jang C, Choi HJ, Chang KS, et al. Checklist of vascular plants of the Tian-Shan Mountain System. Pocheon: Korea National Arboretum; 2021.
Bortiri E, Oh SH, Jiang JG, Baggett S, Granger A, Weeks C, et al. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot. 2001;26:797–807.
Lee S, Wen J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot. 2001;88:150–60.
pubmed: 11159135
doi: 10.2307/2657135
Shi S, Li J, Sun J, Yu J, Zhou S. Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol. 2013;55(11):1069–79.
pubmed: 23945216
doi: 10.1111/jipb.12095
Global Carex Group. Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Bot J Linn Soc. 2015;179(1):1–42.
doi: 10.1111/boj.12298
Roalson EH, Jiménez-Mejías P, Hipp AL, Benítez-Benítez C, Bruederle LP, Chung KS, et al. A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles. J Syst Evol. 2021;59(4):726–62.
doi: 10.1111/jse.12722
Jiang J, Zhou T, Chen X, Zhang L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ Res Lett. 2020;15:054009.
doi: 10.1088/1748-9326/ab7d03
Losapio G, Cerabolini BEL, Maffioletti C, Tampucci D, Gobbi M, Caccianiga M. The consequences of glacier retreat are uneven between plant species. Front Ecol Evol. 2021;8:616562.
doi: 10.3389/fevo.2020.616562
Auld J, Everingham SE, Hemmings FA, Moles AT. Alpine plants are on the move: Quantifying distribution shifts of Australian alpine plants through time. Divers Distrib. 2022;28:943–55.
doi: 10.1111/ddi.13494
Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob Chang Biol. 2008;14(8):1703–20.
pmcid: 3597264
doi: 10.1111/j.1365-2486.2008.01596.x
Cotto O, Wessely J, Georges D, Klonner G, Schmid M, Dullinger S, et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat Commun. 2017;8:15399.
pubmed: 28474676
pmcid: 5424169
doi: 10.1038/ncomms15399
Niskanen AKJ, Niittynen P, Aalto J, Väre H, Luoto M. Lost at high latitudes: arctic and endemic plants under threat as climate warms. Divers Distrib. 2018;25:809–21.
doi: 10.1111/ddi.12889
Behroozian M, Ejtehadi H, Peterson AT, Memariani F, Mesdaghi M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS One. 2020;15(8):e0237527.
pubmed: 32810170
pmcid: 7437464
doi: 10.1371/journal.pone.0237527
Thiers B. New York Botanical Garden’s Virtual Herbarium. Index Herbariorum: A global directory of public herbaria and associated staff. 2022. http://sweetgum.nybg.org/science/ih . Accessed 10 Oct 2022.
Seim A, Omurova G, Azisov E, Musuraliev K, Aliev K, Tulyaganov T, et al. Climate change increases drought stress of juniper trees in the mountains of Central Asia. Plos One. 2016;11(4):1–14.
doi: 10.1371/journal.pone.0153888
Williams MW, Konovalov VG. Central Asia Temperature and Precipitation Data (1879–2003). Boulder, Colorado: USA National Snow and Ice Data Center; 2008.
Latipova WA. Precipitation [Kolichestvo osadkov]. In: Narzikulov IK, Stanjukovich KW, editors. Atlas Tajikskoi SSR. Dushanbe-Moskva: Akademia Nauk Tajikskoi SSR; 1968. p. 68–9.
Narzikulov IK, Stanjukovich KW. Atlas Tajikskoi SSR. Dushanbe-Moskva: Akademia Nauk Tajikskoi SSR; 1968.
Dimeyeva LA, Sitpayeva GT, Sultanova BM, Ussen K, Islamgulova AF, et al. High-altitude flora and vegetation of Kazakhstan and climate change impacts. In: Öztürk M, et al., editors. Climate change impacts on high-altitude ecosystems. Switzerland: Springer International Publishing; 2015. p. 1–48.
Zhikhareva GA, Kurmangaliev АB, Sokolov AA. The soils of Chimkent Oblast. Alma-Ata: Nauka; 1969.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of Fungal Ribosomal Rna genes for Phylogenetics. In: Innis AM, Gelfand DH, Sninsky JJ, White TJ, editors. PCR - Protocols. A guide to methods and applications. Academic Press; 1990. p. 315–22.
Ronikier M, Zalewska-Gałosz J. Independent evolutionary history between the Balkan ranges and more northerly mountains in Campanula alpina s.l. (Campanulaceae): genetic divergence and morphological segregation of taxa. Taxon. 2014;63(1):116–31.
doi: 10.12705/631.4
Ronikier M, Cieślak E, Korbecka G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several carpathian regions and long-term isolation between the carpathians and the alps. Mol Ecol. 2008;17(7):1763–75.
pubmed: 18284572
doi: 10.1111/j.1365-294X.2008.03664.x
Borsch T, Korotkova N, Raus T, Lobin W, Löhne C. The petD group II intron as a species level marker: utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). Willdenowia. 2009;39(1):7–33.
doi: 10.3372/wi.39.39101
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol. 2012;888:67–89.
pubmed: 22665276
doi: 10.1007/978-1-61779-870-2_5
Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, et al. Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 2011;5(7):P54.
pmcid: 3240076
doi: 10.1186/1753-6561-5-S7-P54
Cruz VMV, Kilian A, Dierig DA. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS One. 2013;8(5):64062.
doi: 10.1371/journal.pone.0064062
Baiakhmetov E, Nowak A, Gudkova PD, Nobis M. Morphological and genome-wide evidence for natural hybridisation within the genus Stipa (Poaceae). Sci Rep. 2020;10(1):1–14.
doi: 10.1038/s41598-020-70582-1
Melville J, Haines ML, Boysen K, Hodkinson L, Kilian A, Smith Date KL, et al. Identifying hybridization and admixture using SNPs: application of the DArTseq platform in phylogeographic research on vertebrates. R Soc Open Sci. 2017;4(7):161061.
pubmed: 28791133
pmcid: 5541528
doi: 10.1098/rsos.161061
Edet OU, Gorafi YSA, Nasuda S, Tsujimoto H. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep. 2018;8:16397.
pubmed: 30401925
pmcid: 6219600
doi: 10.1038/s41598-018-34811-y
Smýkal P, Trnčný O, Brus J, Hanáček P, Rathore A, Das RR, et al. Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. Plos One. 2018;13(3):e0194056.
pubmed: 29579076
pmcid: 5868773
doi: 10.1371/journal.pone.0194056
Sinaga P, Klichowska E, Nowak A, Nobis M. Hybridization and introgression events in cooccurring populations of closely related grasses (Poaceae: Stipa) in high mountain steppes of Central Asia. Plos One. 2024;19(2):e0298760.
pubmed: 38412151
pmcid: 10898772
doi: 10.1371/journal.pone.0298760
Ketema S, Tesfaye B, Keneni G, Fenta BA, Assefa E, Greliche N, et al. DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea [Vigna unguiculata (L.) Walp] germplasms. Plos One. 2020;15(10):e0239122.
pubmed: 33031381
pmcid: 7544073
doi: 10.1371/journal.pone.0239122
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2020. https://www.r-project.org . Accessed 1 Oct 2022.
Gruber B, Unmack PJ, Berry OF, Georges A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour. 2018;18(3):691–9.
pubmed: 29266847
doi: 10.1111/1755-0998.12745
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
pubmed: 22357727
pmcid: 3329765
doi: 10.1093/sysbio/sys029
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Rambaut A. Figtree v1.4.4. 2018. http://tree.bio.ed.ac.uk/software/figtree . Accessed 1 Oct 2022.
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.
doi: 10.1002/joc.5086
Batjes NH, Ribeiro E, van Oostrum A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst Sci Data. 2020;12:299–320.
doi: 10.5194/essd-12-299-2020
Shiogama H, Abe M, Tatebe H. MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation; 2019. https://doi.org/10.22033/ESGF/CMIP6.577110.22033/ESGF/CMIP6.5771 . Accessed 1 Oct 2022.
Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, et al. CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation; 2019. https://doi.org/10.22033/ESGF/CMIP6.4271 . Accessed 1 Oct 2022.
Roberts M. MOHC HadGEM3-GC31-LL model output prepared for CMIP6 HighResMIP. Earth System Grid Federation; 2017. https://doi.org/10.22033/ESGF/CMIP6.1901 . Accessed 1 Oct 2022.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–78.
doi: 10.1002/joc.1276
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–59.
doi: 10.1016/j.ecolmodel.2005.03.026
Pearce J, Ferrier S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell. 2000;133:225–45.
doi: 10.1016/S0304-3800(00)00322-7
Wang TL, Wang GY, Innes J, Nitschke C, Kang HJ. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region. For Ecol Manage. 2016;360:357–66.
doi: 10.1016/j.foreco.2015.08.004
Zhang K, Yao L, Meng J, Tao J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Environ. 2018;634:1326–34.
pubmed: 29710632
doi: 10.1016/j.scitotenv.2018.04.112
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. 2008;62(11):2868–83.
pubmed: 18752605
doi: 10.1111/j.1558-5646.2008.00482.x
Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography. 2017;40(6):774–87.
doi: 10.1111/ecog.02671