Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance.
FAT10
Pax5
Tam-resistance
breast cancer
lymphotoxin
nuclear IKKα
nuclear IKKα-FAT0 pathway
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
01 Apr 2024
01 Apr 2024
Historique:
received:
05
06
2023
accepted:
26
09
2023
medline:
3
4
2024
pubmed:
3
4
2024
entrez:
2
4
2024
Statut:
aheadofprint
Résumé
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER
Identifiants
pubmed: 38565741
doi: 10.1007/s11427-023-2460-0
pii: 10.1007/s11427-023-2460-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Science China Press.
Références
Ahmad, S.M., Bhat, S.S., Shafi, S., Dar, M.A., Saleem, A., Haq, Z., Farooq, N., Nazir, J., and Bhat, B. (2023). Identification of key transcription factors and their functional role involved in Salmonella typhimurium infection in chicken using integrated transcriptome analysis and bioinformatics approach. BMC Genomics 24, 214.
pubmed: 37098463
pmcid: 10127038
doi: 10.1186/s12864-023-09315-3
Aichem, A., and Groettrup, M. (2016). The ubiquitin-like modifier FAT10 in cancer development. Int J Biochem Cell Biol 79, 451–461.
pubmed: 27393295
doi: 10.1016/j.biocel.2016.07.001
Aichem, A., and Groettrup, M. (2020). The ubiquitin-like modifier FAT10-much more than a proteasome-targeting signal. J Cell Sci 133, jcs246041.
pubmed: 32719056
doi: 10.1242/jcs.246041
Ammirante, M., Luo, J.L., Grivennikov, S., Nedospasov, S., and Karin, M. (2010). B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305.
pubmed: 20220849
pmcid: 2866639
doi: 10.1038/nature08782
Arshad, M., Abdul Hamid, N., Chan, M.C., Ismail, F., Tan, G.C., Pezzella, F., and Tan, K.L. (2021). NUB1 and FAT10 proteins as potential novel biomarkers in cancer: a translational perspective. Cells 10, 2176.
pubmed: 34571823
pmcid: 8468723
doi: 10.3390/cells10092176
Berns, E.M., Foekens, J.A., Vossen, R., Look, M.P., Devilee, P., Henzen-Logmans, S.C., van Staveren, I.L., van Putten, W.L., Inganas, M., Meijer-van Gelder, M.E., and Cornelisse, C. (2000). Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res 60, 2155–2162.
pubmed: 10786679
Bykov, V.J.N., Eriksson, S.E., Bianchi, J., and Wiman, K.G. (2018). Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18, 89–102.
pubmed: 29242642
doi: 10.1038/nrc.2017.109
Cai, Z., Wang, J., Li, Y., Shi, Q., Jin, L., Li, S., Zhu, M., Wang, Q., Wong, L.L., Yang, W., et al. (2023). Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci China Life Sci 66, 94–109.
pubmed: 35982377
doi: 10.1007/s11427-021-2140-8
Cao, Y., Luo, J., and Karin, M. (2007). IκB kinase a kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA 104, 15852–15857.
pubmed: 17890319
pmcid: 2000410
doi: 10.1073/pnas.0706728104
Chao, C.C.K. (2015). Mechanisms of p53 degradation. Clinica Chim Acta 438, 139–147.
doi: 10.1016/j.cca.2014.08.015
Ellsworth, R.E., Seebach, J., Field, L.A., Heckman, C., Kane, J., Hooke, J.A., Love, B., and Shriver, C.D. (2009). A gene expression signature that defines breast cancer metastases. Clin Exp Metastas 26, 205–213.
doi: 10.1007/s10585-008-9232-9
Fernandez-Cuesta, L., Anaganti, S., Hainaut, P., and Olivier, M. (2011). p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines. Intl J Cancer 128, 1813–1821.
doi: 10.1002/ijc.25512
Gong, C., Cheng, Z., Yang, Y., Shen, J., Zhu, Y., Ling, L., Lin, W., Yu, Z., Li, Z., Tan, W., et al. (2022). A 10-miRNA risk score-based prediction model for pathological complete response to neoadjuvant chemotherapy in hormone receptor-positive breast cancer. Sci China Life Sci 65, 2205–2217.
pubmed: 35579777
doi: 10.1007/s11427-022-2104-3
Hanker, A.B., Sudhan, D.R., and Arteaga, C.L. (2020). Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513.
pubmed: 32289273
pmcid: 7169993
doi: 10.1016/j.ccell.2020.03.009
Hany, D., Vafeiadou, V., and Picard, D. (2023). CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor a activity and tamoxifen resistance of breast cancer cells. Sci Adv 9, eadd3685.
pubmed: 37172090
pmcid: 10181187
doi: 10.1126/sciadv.add3685
Hipp, M.S., Kalveram, B., Raasi, S., Groettrup, M., and Schmidtke, G. (2005). FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol Cell Biol 25, 3483–3491.
pubmed: 15831455
pmcid: 1084302
doi: 10.1128/MCB.25.9.3483-3491.2005
Inuzuka, H., Tseng, A., Gao, D., Zhai, B., Zhang, Q., Shaik, S., Wan, L., Ang, X.L., Mock, C., Yin, H., et al. (2010). Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCFβ-TRCP ubiquitin ligase. Cancer Cell 18, 147–159.
pubmed: 20708156
pmcid: 2923652
doi: 10.1016/j.ccr.2010.06.015
Jeong, J.H., Park, S.J., Dickinson, S.I., and Luo, J.L. (2017). A constitutive intrinsic inflammatory signaling circuit composed of miR-196b, Meis2, PPP3CC, and p65 drives prostate cancer castration resistance. Mol Cell 65, 154–167.
pubmed: 28041912
doi: 10.1016/j.molcel.2016.11.034
Jeong, J.H., Zhong, S., Li, F., Huang, C., Chen, X., Liu, Q., Peng, S., Park, H.J., Lee, Y. M., Dhillon, J., et al. (2023). Tumor-derived OBP2A promotes prostate cancer castration resistance. J Exp Med 220, e20211546.
pubmed: 36547668
doi: 10.1084/jem.20211546
Khorsandi, L., and Farasat, M. (2020). Zinc oxide nanoparticles enhance expression of maspin in human breast cancer cells. Environ Sci Pollut Res 27, 38300–38310.
doi: 10.1007/s11356-020-09986-5
Lee, C.G., Ren, J., Cheong, I.S., Ban, K.H., Ooi, L.L., Yong Tan, S., Kan, A., Nuchprayoon, I., Jin, R., Lee, K.H., et al. (2003). Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers. Oncogene 22, 2592–2603.
pubmed: 12730673
doi: 10.1038/sj.onc.1206337
Li, Y., Moriyama, T., Yoshimura, S., Zhao, X., Li, Z., Yang, X., Paietta, E., Litzow, M.R., Konopleva, M., Yu, J., et al. (2022). PAX5 epigenetically orchestrates CD58 transcription and modulates blinatumomab response in acute lymphoblastic leukemia. Sci Adv 8, eadd6403.
pubmed: 36516256
pmcid: 9750140
doi: 10.1126/sciadv.add6403
Liu, B., Xia, X., Zhu, F., Park, E., Carbajal, S., Kiguchi, K., DiGiovanni, J., Fischer, S.M., and Hu, Y. (2008). IKKα is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 14, 212–225.
pubmed: 18772111
pmcid: 7263012
doi: 10.1016/j.ccr.2008.07.017
Luo, J.L., Kamata, H., and Karin, M. (2005). IKK/NF-B signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest 115, 2625–2632.
pubmed: 16200195
pmcid: 1236696
doi: 10.1172/JCI26322
Luo, J.L., Maeda, S., Hsu, L.C., Yagita, H., and Karin, M. (2004). Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305.
pubmed: 15380520
doi: 10.1016/j.ccr.2004.08.012
Luo, J.L., Tan, W., Ricono, J.M., Korchynskyi, O., Zhang, M., Gonias, S.L., Cheresh, D. A., and Karin, M. (2007). Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694.
pubmed: 17377533
doi: 10.1038/nature05656
Mah, M.M., Basler, M., and Groettrup, M. (2019). The ubiquitin-like modifier FAT10 is required for normal IFN-γ production by activated CD8
pubmed: 30818228
doi: 10.1016/j.molimm.2019.02.010
Medvedovic, J., Ebert, A., Tagoh, H., and Busslinger, M. (2011). Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol 111, 179–206.
pubmed: 21970955
Mills, J.N., Rutkovsky, A.C., and Giordano, A. (2018). Mechanisms of resistance in estrogen receptor positive breast cancer: overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol 41, 59–65.
pubmed: 29719270
pmcid: 6454890
doi: 10.1016/j.coph.2018.04.009
Mishra, A., Srivastava, A., Pateriya, A., Tomar, M.S., Mishra, A.K., and Shrivastava, A. (2021). Metabolic reprograming confers tamoxifen resistance in breast cancer. Chem Biol Interact 347, 109602.
pubmed: 34331906
doi: 10.1016/j.cbi.2021.109602
Mullighan, C.G., Goorha, S., Radtke, I., Miller, C.B., Coustan-Smith, E., Dalton, J.D., Girtman, K., Mathew, S., Ma, J., Pounds, S.B., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764.
pubmed: 17344859
doi: 10.1038/nature05690
Nasri Nasrabadi, P., Martin, D., Gharib, E., and Robichaud, G.A. (2022). The pleiotropy of PAX5 gene products and function. Int J Mol Sci 23, 10095.
pubmed: 36077495
pmcid: 9456430
doi: 10.3390/ijms231710095
Olivier, M., Langer, A., Carrieri, P., Bergh, J., Klaar, S., Eyfjord, J., Theillet, C., Rodriguez, C., Lidereau, R., Bièche, I., et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12, 1157–1167.
pubmed: 16489069
doi: 10.1158/1078-0432.CCR-05-1029
Park, K.J., Krishnan, V., O’Malley, B.W., Yamamoto, Y., and Gaynor, R.B. (2005). Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18, 71–82.
pubmed: 15808510
doi: 10.1016/j.molcel.2005.03.006
Rokavec, M., and Luo, J.L. (2012). The transient and constitutive inflammatory signaling in tumorigenesis. Cell Cycle 11, 2587–2588.
pubmed: 22751429
pmcid: 3409001
doi: 10.4161/cc.21139
Rokavec, M., Schroth, W., Amaral, S.M.C., Fritz, P., Antoniadou, L., Glavac, D., Simon, W., Schwab, M., Eichelbaum, M., and Brauch, H. (2008). A polymorphism in the TC21 promoter associates with an unfavorable tamoxifen treatment outcome in breast cancer. Cancer Res 68, 9799–9808.
pubmed: 19047159
doi: 10.1158/0008-5472.CAN-08-0247
Rokavec, M., Wu, W., and Luo, J.L. (2012). IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell 45, 777–789.
pubmed: 22364742
pmcid: 3319241
doi: 10.1016/j.molcel.2012.01.015
Schregle, R., Mah, M.M., Mueller, S., Aichem, A., Basler, M., and Groettrup, M. (2018). The expression profile of the ubiquitin-like modifier FAT10 in immune cells suggests cell type-specific functions. Immunogenetics 70, 429–438.
pubmed: 29508036
doi: 10.1007/s00251-018-1055-5
Shi, Q., Li, Y., Li, S., Jin, L., Lai, H., Wu, Y., Cai, Z., Zhu, M., Li, Q., Li, Y., et al. (2020). LncRNA DILA1 inhibits cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun 11, 5513.
pubmed: 33139730
pmcid: 7608661
doi: 10.1038/s41467-020-19349-w
Song, A., Wang, Y., Jiang, F., Yan, E., Zhou, J., Ye, J., Zhang, H., Ding, X., Li, G., Wu, Y., et al. (2021). Ubiquitin D promotes progression of oral squamous cell carcinoma via NF-Kappa B signaling. Molecules Cells 44, 468–480.
pubmed: 34230226
pmcid: 8334351
doi: 10.14348/molcells.2021.2229
Su, H., Qin, M., Liu, Q., Jin, B., Shi, X., and Xiang, Z. (2021). Ubiquitin-like protein UBD promotes cell proliferation in colorectal cancer by facilitating p53 degradation. Front Oncol 11, 691347.
pubmed: 34350116
pmcid: 8327751
doi: 10.3389/fonc.2021.691347
Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529–533.
pubmed: 19626115
doi: 10.1038/nature08199
Theng, S.S., Wang, W., Mah, W.C., Chan, C., Zhuo, J., Gao, Y., Qin, H., Lim, L., Chong, S.S., Song, J., et al. (2014). Disruption of FAT10-MAD2 binding inhibits tumor progression. Proc Natl Acad Sci USA 111, E5282–5291.
pubmed: 25422469
pmcid: 4267366
doi: 10.1073/pnas.1403383111
Truongvan, N., Li, S., Misra, M., Kuhn, M., and Schindelin, H. (2022). Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat Commun 13, 4789.
pubmed: 35970836
pmcid: 9378703
doi: 10.1038/s41467-022-32040-6
Xiang, S., Shao, X., Cao, J., Yang, B., He, Q., and Ying, M. (2020). FAT10: function and relationship with cancer. Curr Mol Pharmacol 13, 182–191.
pubmed: 31729307
doi: 10.2174/1874467212666191113130312
Yu, H., Lin, L., Zhang, Z., Zhang, H., and Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Sig Transduct Target Ther 5, 209.
doi: 10.1038/s41392-020-00312-6
Yuan, L., Gao, F., Lv, Z., Nayak, D., Nayak, A., Santos Bury, P., Cano, K.E., Jia, L., Oleinik, N., Atilgan, F.C., et al. (2022). Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Nat Commun 13, 4880.
pubmed: 35986001
pmcid: 9391358
doi: 10.1038/s41467-022-32613-5
Zhang, K., Chen, L., Zhang, Z., Cao, J., He, L., and Li, L. (2020). Ubiquitin-like protein FAT10: a potential cardioprotective factor and novel therapeutic target in cancer. Clinica Chim Acta 510, 802–811.
doi: 10.1016/j.cca.2020.09.016
Zhong, S., Huang, C., Chen, Z., Chen, Z., and Luo, J.L. (2021). Targeting inflammatory signaling in prostate cancer castration resistance. J Clin Med 10, 5000.
pubmed: 34768524
pmcid: 8584457
doi: 10.3390/jcm10215000
Zou, Y, Ouyang, Q, Wei, W, Yang, S, Zhang, Y, and Yang, W (2018). FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 506, 563–570.
pubmed: 30361097
doi: 10.1016/j.bbrc.2018.10.109