High Frequency of Cognitive and Behavioral Impairment in Amyotrophic Lateral Sclerosis Patients with SOD1 Pathogenic Variants.
Journal
Annals of neurology
ISSN: 1531-8249
Titre abrégé: Ann Neurol
Pays: United States
ID NLM: 7707449
Informations de publication
Date de publication:
03 Apr 2024
03 Apr 2024
Historique:
revised:
09
03
2024
received:
14
01
2024
accepted:
11
03
2024
medline:
3
4
2024
pubmed:
3
4
2024
entrez:
3
4
2024
Statut:
aheadofprint
Résumé
While the cognitive-behavioral characteristics of amyotrophic lateral sclerosis (ALS) patients carrying C9orf72 pathological repeat expansion have been extensively studied, our understanding of those carrying SOD1 variants is mostly based on case reports. The aim of this paper is to extensively explore the cognitive-behavioral characteristics of a cohort of ALS patients carrying pathogenetic variants of SOD1 gene, comparing them to patients without pathogenetic variants of 46 ALS-related genes (wild-type [WT]-ALS) and healthy controls. All ALS patients seen at the Turin ALS expert center in the 2009-2021 period who underwent both cognitive/behavioral and extensive genetic testing were eligible to be included in the study. Only patients with SOD1 pathogenetic variants (n = 28) (SOD1-ALS) and WT-ALS (n = 829) were enrolled in the study. A series of 129 controls was also included. Among the 28 SOD1-ALS patients, 16 (57.1%) had normal cognitive function, 5 (17.9%) isolated cognitive impairment (ALSci) (17.9%), 6 (21.4%) isolated behavioral impairment (ALSbi), 1 (3.6%) cognitive and behavioral impairment (ALScbi), and no one ALS-FTD. SOD1-ALS performed worse than controls in all explored domains, in particular Social Cognition and Language domains. SOD1-ALS patients had similar scores in all tests compared to WT-ALS, except the Story-based Empathy Task (SET), where they performed worse. Cognitive-behavioral impairment is much more common in SOD1 patients than previously assumed. SOD1-ALS are characterized by a more frequent impairment of Social Cognition and, less markedly, of Language domains. These findings have relevant implication both in the clinical and in the research setting, also considering recently approved treatment for SOD1-ALS. ANN NEUROL 2024.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministero della Salute
ID : RF-2016-02362405
Organisme : HORIZON EUROPE Health
ID : 101017598
Organisme : Ministero dell'Università e della Ricerca
ID : 2017SNW5MB
Organisme : FP7 Health
ID : 259867
Informations de copyright
© 2024 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
Références
Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population‐based study. J Neurol Neurosurg Psychiatry 2012;83:102–108. https://doi.org/10.1136/jnnp-2011-300188 PMID: 21836033.
Montuschi A, Iazzolino B, Calvo A, et al. Cognitive correlates in amyotrophic lateral sclerosis: a population‐based study in Italy. J Neurol Neurosurg Psychiatry 2015;86:168–173. https://doi.org/10.1136/jnnp-2013-307223 PMID: 24769471.
Akçimen F, Lopez ER, Landers JE, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023;24:642–658. https://doi.org/10.1038/s41576-023-00592-y PMID: 37024676.
Grassano M, Calvo A, Moglia C, et al. Systematic evaluation of genetic mutations in ALS: a population‐based study. J Neurol Neurosurg Psychiatry 2022;93:1190–1193. https://doi.org/10.1136/jnnp-2022-328931 PMID: 35896380.
Chiò A, Moglia C, Canosa A, et al. ALS phenotype is influenced by age, sex, and genetics: a population‐based study. Neurology 2020;94:e802–e810. https://doi.org/10.1212/WNL.0000000000008869 PMID: 31907290.
Byrne S, Elamin M, Bede P, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population‐based cohort study. Lancet Neurol 2012;11:232–240. https://doi.org/10.1016/S1474-4422(12)70014-5 PMID: 22305801.
Iazzolino B, Peotta L, Zucchetti JP, et al. Differential neuropsychological profile of patients with amyotrophic lateral sclerosis with and without C9orf72 mutation. Neurology 2021;96:e141–e152. https://doi.org/10.1212/WNL.0000000000011093 PMID: 33106391.
Colombo E, Poletti B, Maranzano A, et al. Motor, cognitive and behavioural profiles of C9orf72 expansion‐related amyotrophic lateral sclerosis. J Neurol 2023;270:898–908. https://doi.org/10.1007/s00415-022-11433-z Epub 2022 Oct 29. Erratum in: J Neurol 2023 Jun;270(6):3284–3285. PMID: 36308529.
Martinelli I, Zucchi E, Simonini C, et al. The landscape of cognitive impairment in superoxide dismutase 1‐amyotrophic lateral sclerosis. Neural Regen Res 2023;18:1427–1433. https://doi.org/10.4103/1673-5374.361535 PMID: 36571338.
Shefner JM, Al‐Chalabi A, Baker MR, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol 2020;131:1975–1978. https://doi.org/10.1016/j.clinph.2020.04.005 Epub 2020 Apr 19. PMID: 32387049.
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456–2477. https://doi.org/10.1093/brain/awr179 PMID: 21810890.
Strong MJ, Abrahams S, Goldstein LH, et al. Amyotrophic lateral sclerosis – frontotemporal spectrum disorder (ALS‐FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017;18:153–174. https://doi.org/10.1080/21678421.2016.1267768 PMID: 28054827.
Poletti B, Solca F, Carelli L, et al. Cognitive‐behavioral longitudinal assessment in ALS: the Italian Edinburgh cognitive and behavioral ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 2018;19:387–395. https://doi.org/10.1080/21678421.2018.1473443 PMID: 29804470.
Kortte KB, Horner MD, Windham WK. The trail making test, part B: cognitive flexibility or ability to maintain set? Appl Neuropsychol 2002;9:106–109. PMID: 12214820.
Beeldman E, Raaphorst J, Klein Twennaar M, et al. The cognitive profile of ALS: a systematic review and meta‐analysis update. J Neurol Neurosurg Psychiatry 2016;8:611–619. PMID: 26283685.
Beeldman E, Raaphorst J, Klein Twennaar M, et al. The cognitive profile of behavioural variant FTD and its similarities with ALS: a systematic review and meta‐analysis. J Neurol Neurosurg Psychiatry 2018;89:995–1002. PMID: 29439163.
Grassano M, Calvo A, Moglia C, et al. Chiò a; American genomic center. Mutational analysis of known ALS genes in an Italian population‐based cohort. Neurology 2021;96:e600–e609. https://doi.org/10.1212/WNL.0000000000011209 PMID: 33208543.
Morgan S, Shatunov A, Sproviero W, et al. A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain 2017;140:1611–1618. https://doi.org/10.1093/brain/awx082 PMID: 28430856.
Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 2011;72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010 PMID: 21944779.
Canosa A, Palumbo F, Iazzolino B, et al. The interplay among education, brain metabolism, and cognitive impairment suggests a role of cognitive reserve in amyotrophic lateral sclerosis. Neurobiol Aging 2021;98:205–213. https://doi.org/10.1016/j.neurobiolaging.2020.11.010 PMID: 33316576.
Costello E, Rooney J, Pinto‐Grau M, et al. Cognitive reserve in amyotrophic lateral sclerosis (ALS): a population‐based longitudinal study. J Neurol Neurosurg Psychiatry 2021;92:460–465. https://doi.org/10.1136/jnnp-2020-324992 PMID: 33563807.
Temp AGM, Prudlo J, Vielhaber S, et al. Cognitive reserve and regional brain volume in amyotrophic lateral sclerosis. Cortex 2021;139:240–248. https://doi.org/10.1016/j.cortex.2021.03.005 PMID: 33892294.
Wicks P, Abrahams S, Papps B, et al. SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. J Neurol 2009;256:234–241. https://doi.org/10.1007/s00415-009-0078-0 PMID: 19252762.
Bella ED, Bersano E, Bruzzone MG, et al. Behavioral and cognitive phenotypes of patients with amyotrophic lateral sclerosis carrying SOD1 variants. Neurology 2022;99:e2052–e2062. https://doi.org/10.1212/WNL.0000000000201044 PMID: 35985819.
Lopate G, Baloh RH, Al‐Lozi MT, et al. Familial ALS with extreme phenotypic variability due to the I113T SOD1 mutation. Amyotroph Lateral Scler 2010;11:232–236. https://doi.org/10.3109/17482960902898069 PMID: 20184521.
Katz JS, Katzberg HD, Woolley SC, et al. Combined fulminant frontotemporal dementia and amyotrophic lateral sclerosis associated with an I113T SOD1 mutation. Amyotroph Lateral Scler 2012;13:567–569. https://doi.org/10.3109/17482968.2012.678365 PMID: 22670877.
Agosta F, Spinelli EG, Marjanovic IV, et al. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI. Neurology 2018;90:e707–e716. https://doi.org/10.1212/WNL.0000000000005002 PMID: 29367447.
Canosa A, Calvo A, Moglia C, et al. Amyotrophic lateral sclerosis with SOD1 mutations shows distinct brain metabolic changes. Eur J Nucl Med Mol Imaging 2022;49:2242–2250. https://doi.org/10.1007/s00259-021-05668-7 PMID: 35076740.
De Vocht J, Van Weehaeghe D, Ombelet F, et al. Differences in cerebral glucose metabolism in ALS patients with and without C9orf72 and SOD1 mutations. Cells 2023;12:933. https://doi.org/10.3390/cells12060933 PMID: 36980274.
Bersano E, Sarnelli MF, Solara V, et al. Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph Lateral Scler Frontotemporal Degener 2020;21:373–379. https://doi.org/10.1080/21678421.2020.1771732.
Castelnovo V, Canu E, Riva N, et al. Progression of cognitive and behavioral disturbances in motor neuron diseases assessed using standard and computer‐based batteries. Amyotroph Lateral Scler Frontotemporal Degener 2021;22:223–236. https://doi.org/10.1080/21678421.2020.1867179.
Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 2022;387:1099–1110. https://doi.org/10.1056/NEJMoa2204705 PMID: 36129998.