DNA methylation episignature and comparative epigenomic profiling for Pitt-Hopkins syndrome caused by TCF4 variants.
CNV
DNA methylation
Episignature
Neurodevelopmental disorder
PTHS
Pitt-Hopkins syndrome
TCF4
VUS
Journal
HGG advances
ISSN: 2666-2477
Titre abrégé: HGG Adv
Pays: United States
ID NLM: 101772885
Informations de publication
Date de publication:
02 Apr 2024
02 Apr 2024
Historique:
received:
13
11
2023
revised:
26
03
2024
accepted:
26
03
2024
medline:
4
4
2024
pubmed:
4
4
2024
entrez:
4
4
2024
Statut:
aheadofprint
Résumé
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS, for diagnostic purposes and variant reclassification, and further functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis, using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was further assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negative underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.
Sections du résumé
BACKGROUND
BACKGROUND
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS, for diagnostic purposes and variant reclassification, and further functional insights into the molecular pathophysiology of this disorder.
METHODS
METHODS
A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis, using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was further assessed in relation to other neurodevelopmental disorders and its specificity was examined.
RESULTS
RESULTS
A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways.
CONCLUSIONS
CONCLUSIONS
This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negative underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.
Identifiants
pubmed: 38571311
pii: S2666-2477(24)00028-9
doi: 10.1016/j.xhgg.2024.100289
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
100289Informations de copyright
Copyright © 2024. Published by Elsevier Inc.