Commentary of the SKLM to the EFSA opinion on risk assessment of N-nitrosamines in food.


Journal

Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615

Informations de publication

Date de publication:
04 Apr 2024
Historique:
received: 05 03 2024
accepted: 06 03 2024
medline: 4 4 2024
pubmed: 4 4 2024
entrez: 4 4 2024
Statut: aheadofprint

Résumé

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.

Identifiants

pubmed: 38573336
doi: 10.1007/s00204-024-03726-1
pii: 10.1007/s00204-024-03726-1
doi:

Types de publication

Editorial

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Bartsch H, Ohshima H, Pignatelli B, Calmels S (1992) Endogenously formed N-nitroso compounds and nitrosating agents in human cancer etiology. Pharmacogenetics 2(6):272–277. https://doi.org/10.1097/00008571-199212000-00005
doi: 10.1097/00008571-199212000-00005 pubmed: 1339085
Bingham SA, Pignatelli B, Pollock JR et al (1996) Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17(3):515–523. https://doi.org/10.1093/carcin/17.3.515
doi: 10.1093/carcin/17.3.515 pubmed: 8631138
Calmels S, Ohshima H, Vincent P, Gounot AM, Bartsch H (1985) Screening of microorganisms for nitrosation catalysis at pH 7 and kinetic studies on nitrosamine formation from secondary amines by E. coli strains. Carcinogenesis 6(6):911–915. https://doi.org/10.1093/carcin/6.6.911
doi: 10.1093/carcin/6.6.911 pubmed: 4006079
Calmels S, Ohshima H, Bartsch H (1988) Nitrosamine formation by denitrifying and non-denitrifying bacteria: implication of nitrite reductase and nitrate reductase in nitrosation catalysis. J Gen Microbiol 134(1):221–226. https://doi.org/10.1099/00221287-134-1-221
doi: 10.1099/00221287-134-1-221 pubmed: 3141563
Chhabra SK, Souliotis VL, Harbaugh JW et al (1995) O6-methylguanine DNA adduct formation and modulation by ethanol in placenta and fetal tissues after exposure of pregnant patas monkeys to N-nitrosodimethylamine. Cancer Res 55(24):6017–6020
pubmed: 8521384
Duncan C, Dougall H, Johnston P et al (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1(6):546–551. https://doi.org/10.1038/nm0695-546
doi: 10.1038/nm0695-546 pubmed: 7585121
Dunn SR, Pensabene JW, Simenhoff ML (1986) Analysis of human blood for volatile N-nitrosamines by gas chromatography-chemiluminescence detection. J Chromatogr 377:35–47. https://doi.org/10.1016/s0378-4347(00)80759-8
doi: 10.1016/s0378-4347(00)80759-8 pubmed: 3711226
EFSA (2005) Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J 3(10):282
doi: 10.2903/j.efsa.2005.282
EFSA (2008) Nitrate in vegetables—scientific opinion of the panel on contaminants in the food chain. EFSA J 689:1–79
EFSA (2010) Statement on nitrites in meat products—scientific opinion of the panel on food additives and nutrient sources added to food. EFSA J 8:1538
EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, Hoogenboom L, Leblanc JC, Nebbia CS (2023) Risk assessment of N‐nitrosamines in food. EFSA J 21(3):e07884
doi: 10.2903/j.efsa.2023.7884
Eisenbrand G, Spiegelhalder B, Preussmann R (1980) Nitrate and nitrite in saliva. Oncology 37(4):227–231. https://doi.org/10.1159/000225441
doi: 10.1159/000225441 pubmed: 7443155
Eisenbrand G, Baum M, Cartus AT et al (2022) Salivary nitrate/nitrite and acetaldehyde in humans: potential combination effects in the upper gastrointestinal tract and possible consequences for the in vivo formation of N-nitroso compounds-a hypothesis. Arch Toxicol 96(6):1905–1914. https://doi.org/10.1007/s00204-022-03296-0
doi: 10.1007/s00204-022-03296-0 pubmed: 35504979
Eisenbrand G (1990) Endogenous nitrosation–Findings and problems In: Eisenbrand G, Bozler G, von Nicolai H (Eds.), The Significance of N-Nitrosation of Drugs. Gustav Fischer Verlag Stuttgart
FAO/WHO (2003) Nitrate (and Potential Endogenous Formation of N-Nitroso Compounds). In: Safety Evaluation of Certain Food Additives and Contaminants, World Health Organization, Joint FAO/WHO Expert committee on Food Additives, Geneva, WHO Food Additives Series No. 50. http://www.inchem.org/documents/jecfa/jecmono/v50je06.htm .
Georgiadis P, Samoli E, Kaila S, Katsouyanni K, Kyrtopoulos SA (2000) Ubiquitous presence of O6-methylguanine in human peripheral and cord blood DNA. Cancer Epidemiol Biomarkers Prev 9(3):299–305
pubmed: 10750669
Georgiadis P, Kaila S, Makedonopoulou P et al (2011) Development and validation of a new, sensitive immunochemical assay for O6-methylguanine in DNA and its application in a population study. Cancer Epidemiol Biomark Prev 20(1):82–90
doi: 10.1158/1055-9965.EPI-10-0788
Gombar CT, Harrington GW, Pylypiw HM Jr et al (1990) Interspecies scaling of the pharmacokinetics of N-nitrosodimethylamine. Cancer Res 50(14):4366–4370
pubmed: 2364390
Gough TA, Webb KS, Swann PF (1983) An examination of human blood for the presence of volatile nitrosamines. Food Chem Toxicol 21(2):151–156. https://doi.org/10.1016/0278-6915(83)90229-6
doi: 10.1016/0278-6915(83)90229-6 pubmed: 6682077
Green LC, Ruiz de Luzuriaga K, Wagner DA et al (1981) Nitrate biosynthesis in man. Proc Natl Acad Sci U S A 78(12):7764–7768. https://doi.org/10.1073/pnas.78.12.7764
doi: 10.1073/pnas.78.12.7764 pubmed: 6950416 pmcid: 349351
Habermeyer M, Roth A, Guth S et al (2015) Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Mol Nutr Food Res 59(1):106–128. https://doi.org/10.1002/mnfr.201400286
doi: 10.1002/mnfr.201400286 pubmed: 25164923
Hevel JM, White KA, Marletta MA (1991) Purification of the inducible murine macrophage nitric oxide synthase Identification as a flavoprotein. J Biol Chem 266(34):22789–22791
doi: 10.1016/S0021-9258(18)54421-5 pubmed: 1720773
Hofseth LJ, Hussain SP, Wogan GN, Harris CC (2003) Nitric oxide in cancer and chemoprevention. Free Radic Biol Med 34(8):955–968. https://doi.org/10.1016/s0891-5849(02)01363-1
doi: 10.1016/s0891-5849(02)01363-1 pubmed: 12684081
Hrudey SE, Bull RJ, Cotruvo JA, Paoli G, Wilson M (2013) Drinking water as a proportion of total human exposure to volatile N-nitrosamines. Risk Anal 33(12):2179–2208
doi: 10.1111/risa.12070 pubmed: 23786353
Hussain SP, He P, Subleski J et al (2008) Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res 68(17):7130–7136. https://doi.org/10.1158/0008-5472.CAN-08-0410
doi: 10.1158/0008-5472.CAN-08-0410 pubmed: 18757428 pmcid: 2576291
JECFA (2002) Evaluation of certain food additives. Fifty‐ninth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, no. 913. Geneva, 4–13 June 2002
Jeyakumar A, Dissabandara L, Gopalan V (2017) A critical overview on the biological and molecular features of red and processed meat in colorectal carcinogenesis. J Gastroenterol 52:407–418
doi: 10.1007/s00535-016-1294-x pubmed: 27913919
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY (2024) Physiologically-based pharmacokinetic model for evaluating gender-specific exposures of N-nitrosodimethylamine (NDMA). Arch Toxicol 98(3):821–835. https://doi.org/10.1007/s00204-023-03652-8
doi: 10.1007/s00204-023-03652-8 pubmed: 38127128
Knight TM, Forman D, Ohshima H, Bartsch H (1991) Endogenous nitrosation of L-proline by dietary-derived nitrate. Nutr Cancer 15(3–4):195–203. https://doi.org/10.1080/01635589109514127
doi: 10.1080/01635589109514127 pubmed: 1866313
Kunisaki N, Hayashi M (1979) Formation of N-nitrosamines from seconday animes and nitrite by resting cells of Escherichia coli B. Appl Environ Microbiol 37(2):279–282. https://doi.org/10.1128/aem.37.2.279-282.1979
doi: 10.1128/aem.37.2.279-282.1979 pubmed: 35098 pmcid: 243200
Leach S, Challis B, Cook A, Hill M, Thompson M (1985) Bacterial catalysis of the N-nitrosation of secondary amines. Biochem Soc Trans 13(380–38):1
L’Heureux JE, van der Giezen M, Winyard PG, Jones AM, Vanhatalo A (2023) Localisation of nitrate-reducing and highly abundant microbial communities in the oral cavity. PLoS ONE 18(12):e0295058. https://doi.org/10.1371/journal.pone.0295058
doi: 10.1371/journal.pone.0295058 pubmed: 38127919 pmcid: 10735016
Liu H, Huang Y, Huang M et al (2023) From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 28(1):425. https://doi.org/10.1186/s40001-023-01413-y
doi: 10.1186/s40001-023-01413-y pubmed: 37821966 pmcid: 10566198
Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27(24):8706–8711. https://doi.org/10.1021/bi00424a003
doi: 10.1021/bi00424a003 pubmed: 3242600
Mirvish SS (1975) Formation of N-nitroso compounds: chemistry, kinetics, and in vivo occurrence. Toxicol Appl Pharmacol 31(3):325–351. https://doi.org/10.1016/0041-008x(75)90255-0
doi: 10.1016/0041-008x(75)90255-0 pubmed: 238307
Ohshima H, Bartsch H (1988) Urinary N-nitrosamino acids as an index of exposure to N-nitroso compounds. IARC Sci Publ 89:83–91
Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305(2):253–264. https://doi.org/10.1016/0027-5107(94)90245-3
doi: 10.1016/0027-5107(94)90245-3 pubmed: 7510036
Ohshima H, Bereziat JC, Bartsch H (1982a) Measurement of endogenous n-nitrosation in rats and humans by monitoring urinary and faecal excretion of N-nitrosamino acids. IARC Sci Publ 41:397–411
Ohshima H, Bereziat JC, Bartsch H (1982b) Monitoring N-nitrosamino acids excreted in the urine and feces of rats as an index for endogenous nitrosation. Carcinogenesis 3(1):115–120. https://doi.org/10.1093/carcin/3.1.115
doi: 10.1093/carcin/3.1.115 pubmed: 6175434
Ohshima H, O’Neill IK, Friesen M, Bereziat JC, Bartsch H (1984) Occurrence in human urine of new sulphur-containing N-nitrosamino acids N-nitrosothiazolidine 4-carboxylic acid and its 2-methyl derivative, and their formation. J Cancer Res Clin Oncol 108(1):121–128. https://doi.org/10.1007/BF00390983
doi: 10.1007/BF00390983 pubmed: 6746703
Ohshima H, Bandaletova TY, Brouet I et al (1994) Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamsters infected with liver fluke (Opisthorchis viverrini). Carcinogenesis 15(2):271–275. https://doi.org/10.1093/carcin/15.2.271
doi: 10.1093/carcin/15.2.271 pubmed: 7508824
Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333(6174):664–666. https://doi.org/10.1038/333664a0
doi: 10.1038/333664a0 pubmed: 3131684
Rietjens I, Michael A, Bolt HM et al (2022) The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 96(5):1297–1352. https://doi.org/10.1007/s00204-022-03242-0
doi: 10.1007/s00204-022-03242-0 pubmed: 35249149 pmcid: 9013691
Schaus R (1956) Griess’ nitrite test in diagnosis of urinary infection. J Am Med Assoc 161(6):528–529. https://doi.org/10.1001/jama.1956.62970060009009d
doi: 10.1001/jama.1956.62970060009009d pubmed: 13318959
Shuker DEG (2000) The role of nitrosation: Exogenous vs. endogenous exposure to N-nitroso compounds. In: Eisenbrand G (ed) Carcinogenic/anticarcinogenic factors in foods: novel concepts. Wiley-VCH, DFG-SKLM Symposium Series, pp 205–216
Shuker DE, Margison GP (1997) Nitrosated glycine derivatives as a potential source of O6-methylguanine in DNA. Cancer Res 57(3):366–369
pubmed: 9012456
Simenhoff M, Dunn S, Kirkwood R, Fiddler W, Pensabene J (1982) Presence of nitrosamines in blood of normal and diseased human subjects. Cold Spring Harbor, Nitrosamines and human cancer Cold Spring Harbor Laboratory
SKLM (2014) Opinion on nitrate and nitrite in the diet: an approach to assess benefit and risk for human health. Adopted on April 15th 2014. https://www.dfg.de/resource/blob/171380/e58e7784bfb20c1a8c1f49e08a5c74b4/sklm-opinion-nitrate-nitrite-data.pdf
Souliotis VL, Chhabra S, Anderson LM, Kyrtopoulos SA (1995) Dosimetry of O6-methylguanine in rat DNA after low-dose, chronic exposure to N-nitrosodimethylamine (NDMA). Implications for the mechanism of NDMA hepatocarcinogenesis. Carcinogenesis 16(10):2381–2387. https://doi.org/10.1093/carcin/16.10.2381
doi: 10.1093/carcin/16.10.2381 pubmed: 7586139
Spiegelhalder B, Eisenbrand G, Preussmann R (1976) Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol 14(6):545–548. https://doi.org/10.1016/s0015-6264(76)80005-3
doi: 10.1016/s0015-6264(76)80005-3 pubmed: 1017769
Suzuki K, Mitsuoka T (1984) N-nitrosamine formation by intestinal bacteria. IARC Sci Publ 57:275–281
Tannenbaum SR (1980) A model for estimation of human exposure to endogenous N-nitrosodimethylamine. Oncology 37(4):232–235. https://doi.org/10.1159/000225442
doi: 10.1159/000225442 pubmed: 6255387
Tannenbaum SR, Weisman M, Fett D (1976) The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet Toxicol 14(6):549–552. https://doi.org/10.1016/s0015-6264(76)80006-5
doi: 10.1016/s0015-6264(76)80006-5 pubmed: 1017770
Tannenbaum SR, Fett D, Young VR, Land PD, Bruce WR (1978) Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science 200(4349):1487–1489. https://doi.org/10.1126/science.663630
doi: 10.1126/science.663630 pubmed: 663630
Tricker AR, Preussmann R (1987) Influence of cysteine and nitrate on the endogenous formation of N-nitrosamino acids. Cancer Lett 34(1):39–47. https://doi.org/10.1016/0304-3835(87)90071-1
doi: 10.1016/0304-3835(87)90071-1 pubmed: 3802068
Turesky RJ (2018) Mechanistic evidence for red meat and processed meat intake and cancer risk: a follow-up on the international agency for research on cancer evaluation of 2015. Chimia (aarau) 72(10):718–724. https://doi.org/10.2533/chimia.2018.718
doi: 10.2533/chimia.2018.718 pubmed: 30376922
Wagner DA, Young VR, Tannenbaum SR (1983) Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci U S A 80(14):4518–4521. https://doi.org/10.1073/pnas.80.14.4518
doi: 10.1073/pnas.80.14.4518 pubmed: 6348771 pmcid: 384070

Auteurs

Gerhard Eisenbrand (G)

, Kühler Grund 48/1, 69126, Heidelberg, Germany.

Andrea Buettner (A)

Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 9, 91054, Erlangen, Germany.
Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany.

Patrick Diel (P)

Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.

Bernd Epe (B)

Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg, 55128, Mainz, Germany.

Petra Först (P)

Food Process Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany.

Tillman Grune (T)

German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.

Dirk Haller (D)

Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354, Freising, Germany.
ZIEL Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany.

Volker Heinz (V)

DIL German Institute of Food Technology, Professor-von-Klitzing-Strasse 7, 49610, Quakenbrück, Germany.

Michael Hellwig (M)

Chair of Special Food Chemistry, Technical University Dresden, Bergstrasse 66, 01062, Dresden, Germany.

Hans-Ulrich Humpf (HU)

Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany.

Henry Jäger (H)

University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, 1180, Vienna, Austria.

Sabine Kulling (S)

Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany.

Alfonso Lampen (A)

Risk Assessment Strategies, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.

Marcel Leist (M)

Division for In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78464, Constance, Germany.

Angela Mally (A)

Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.

Doris Marko (D)

Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Strasse 38-40, 1090, Vienna, Austria.

Ute Nöthlings (U)

Institute for Nutrition Research and Food Science, Rheinische Friedrich-Wilhelms-University Bonn, Fiedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.

Elke Röhrdanz (E)

Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany.

Joachim Spranger (J)

Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Pablo Steinberg (P)

Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-Und-Neu-Straße 9, 76131, Karlsruhe, Germany.

Stefan Vieths (S)

Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.

Wim Wätjen (W)

Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany.

Jan G Hengstler (JG)

Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany. hengstler@ifado.de.

Classifications MeSH