SOXC are critical regulators of adult bone mass.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Apr 2024
Historique:
received: 08 09 2023
accepted: 28 03 2024
medline: 6 4 2024
pubmed: 6 4 2024
entrez: 5 4 2024
Statut: epublish

Résumé

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr

Identifiants

pubmed: 38580651
doi: 10.1038/s41467-024-47413-2
pii: 10.1038/s41467-024-47413-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2956

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
ID : AR068308
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
ID : AR072649
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
ID : AR080062

Informations de copyright

© 2024. The Author(s).

Références

Liu, J., Curtis, E. M., Cooper, C. & Harvey, N. C. State of the art in osteoporosis risk assessment and treatment. J. Endocrinol. Invest. 42, 1149–1164 (2019).
pubmed: 30980341 pmcid: 6751157 doi: 10.1007/s40618-019-01041-6
Alswat, K. A. Gender disparities in osteoporosis. J. Clin. Med. Res. 9, 382–387 (2017).
pubmed: 28392857 pmcid: 5380170 doi: 10.14740/jocmr2970w
Rozenberg, S. et al. How to manage osteoporosis before the age of 50. Maturitas 138, 14–25 (2020).
pubmed: 32631584 doi: 10.1016/j.maturitas.2020.05.004
Penna, S., Capo, V., Palagano, E., Sobacchi, C. & Villa, A. One disease, many genes: implications for the treatment of osteopetroses. Front. Endocrinol. 10, 85 (2019).
doi: 10.3389/fendo.2019.00085
Bolamperti, S., Villa, I. & Rubinacci, A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 10, 48 (2022).
pubmed: 35851054 pmcid: 9293977 doi: 10.1038/s41413-022-00219-8
Xu, H. et al. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal. Transduct. Target. Ther. 8, 202 (2023).
pubmed: 37198232 pmcid: 10192458 doi: 10.1038/s41392-023-01467-8
Chan, W. C. W., Tan, Z., To, M. K. T. & Chan, D. Regulation and role of transcription factors in osteogenesis. Int. J. Mol. Sci. 22, 5445 (2021).
pubmed: 34064134 pmcid: 8196788 doi: 10.3390/ijms22115445
Kurotaki, D., Yoshida, H. & Tamura, T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone 138, 115471 (2020).
pubmed: 32526404 doi: 10.1016/j.bone.2020.115471
Almeida, M. et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol. Rev. 97, 135–187 (2017).
pubmed: 27807202 doi: 10.1152/physrev.00033.2015
Wein, M. N. & Kronenberg, H. M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb. Perspect. Med. 8, a031237 (2018).
pubmed: 29358318 pmcid: 6071549 doi: 10.1101/cshperspect.a031237
Karsenty, G. & Khosla, S. The crosstalk between bone remodeling and energy metabolism: a translational perspective. Cell Metab. 34, 805–817 (2022).
pubmed: 35545088 pmcid: 9535690 doi: 10.1016/j.cmet.2022.04.010
Tomlinson, R. E., Christiansen, B. A., Giannone, A. A. & Genetos, D. C. The role of nerves in skeletal development, adaptation, and aging. Front. Endocrinol. 11, 646 (2020).
doi: 10.3389/fendo.2020.00646
Tuckermann, J. & Adams, R. H. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat. Rev. Rheumatol. 17, 608–620 (2021).
pubmed: 34480164 pmcid: 7612477 doi: 10.1038/s41584-021-00682-3
Burkhardt, L. M. et al. The benefits of adipocyte metabolism in bone health and regeneration. Front. Cell Dev. Biol. 11, 1104709 (2023).
pubmed: 36895792 pmcid: 9988968 doi: 10.3389/fcell.2023.1104709
Shen, F., Huang, X., He, G. & Shi, Y. The emerging studies on mesenchymal progenitors in the long bone. Cell Biosci. 13, 105 (2023).
pubmed: 37301964 pmcid: 10257854 doi: 10.1186/s13578-023-01039-x
Guder, C., Gravius, S., Burger, C., Wirtz, D. C. & Schildberg, F. A. Osteoimmunology: a current update of the interplay between bone and the immune system. Front. Immunol. 11, 58 (2020).
pubmed: 32082321 pmcid: 7004969 doi: 10.3389/fimmu.2020.00058
Angelozzi, M. & Lefebvre, V. SOXopathies: growing family of developmental disorders due to SOX mutations. Trends Genet. 35, 658–671 (2019).
pubmed: 31288943 pmcid: 6956857 doi: 10.1016/j.tig.2019.06.003
Bhattaram, P. et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat. Commun. 1, 9 (2010).
pubmed: 20596238 doi: 10.1038/ncomms1008
Schilham, M. W. et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380, 711–714 (1996).
pubmed: 8614465 doi: 10.1038/380711a0
Sock, E. et al. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol. Cell. Biol. 24, 6635–6644 (2004).
pubmed: 15254231 pmcid: 444853 doi: 10.1128/MCB.24.15.6635-6644.2004
Bhattaram, P. et al. SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis. J. Cell Biol. 207, 657–671 (2014).
pubmed: 25452386 pmcid: 4259807 doi: 10.1083/jcb.201405098
Kato, K., Bhattaram, P., Penzo-Mendez, A., Gadi, A. & Lefebvre, V. SOXC transcription factors induce cartilage growth plate formation in mouse embryos by promoting noncanonical WNT signaling. J. Bone Miner. Res. 30, 1560–1571 (2015).
pubmed: 25761772 doi: 10.1002/jbmr.2504
Angelozzi, M., Pellegrino da Silva, R., Gonzalez, M. V. & Lefebvre, V. Single-cell atlas of craniogenesis uncovers SOXC-dependent, highly proliferative, and myofibroblast-like osteodermal progenitors. Cell Rep. 40, 111045 (2022).
pubmed: 35830813 pmcid: 9595211 doi: 10.1016/j.celrep.2022.111045
Zawerton, A. et al. De novo SOX4 variants cause a neurodevelopmental disease associated with mild dysmorphism. Am. J. Hum. Genet. 104, 777 (2019).
pubmed: 30951678 pmcid: 6451692 doi: 10.1016/j.ajhg.2019.01.014
Angelozzi, M. et al. Consolidation of the clinical and genetic definition of a SOX4-related neurodevelopmental syndrome. J. Med. Genet. 59, 1058–1068 (2022).
pubmed: 35232796 doi: 10.1136/jmedgenet-2021-108375
Tsurusaki, Y. et al. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat. Commun. 5, 4011 (2014).
pubmed: 24886874 doi: 10.1038/ncomms5011
Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7, e1001372 (2011).
pubmed: 21533022 pmcid: 3080863 doi: 10.1371/journal.pgen.1001372
Li, G., Gu, Z., He, Y., Wang, C. & Duan, J. The effect of SOX4 gene 3’UTR polymorphisms on osteoporosis. J. Orthop. Surg. Res. 16, 321 (2021).
pubmed: 34006298 pmcid: 8130251 doi: 10.1186/s13018-021-02454-x
Jemtland, R. et al. Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. J. Bone Miner. Res. 26, 1793–1801 (2011).
pubmed: 21452281 doi: 10.1002/jbmr.396
Nissen-Meyer, L. S. et al. Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J. Cell Sci. 120, 2785–2795 (2007).
pubmed: 17652162 doi: 10.1242/jcs.003855
Gadi, J. et al. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors. J. Biol. Chem. 288, 25400–25413 (2013).
pubmed: 23888050 pmcid: 3757203 doi: 10.1074/jbc.M112.413377
Davey, R. A. et al. Decreased body weight in young Osterix-Cre transgenic mice results in delayed cortical bone expansion and accrual. Transgenic Res. 21, 885–893 (2012).
pubmed: 22160436 doi: 10.1007/s11248-011-9581-z
Seeman, E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1218–1225 (2013).
pubmed: 23833200 doi: 10.1093/gerona/glt071
Tower, R. J., Campbell, G. M., Muller, M., Gluer, C. C. & Tiwari, S. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo. Bone 74, 171–181 (2015).
pubmed: 25613175 doi: 10.1016/j.bone.2015.01.009
Zhong, L. et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife 9, e54695 (2020).
pubmed: 32286228 pmcid: 7220380 doi: 10.7554/eLife.54695
Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).
pubmed: 31871321 doi: 10.1038/s41556-019-0439-6
Zhang, H. et al. Sox4 is a key oncogenic target in C/EBPalpha mutant acute myeloid leukemia. Cancer Cell 24, 575–588 (2013).
pubmed: 24183681 pmcid: 4038627 doi: 10.1016/j.ccr.2013.09.018
Sun, B. et al. Sox4 is required for the survival of pro-B cells. J. Immunol. 190, 2080–2089 (2013).
pubmed: 23345330 doi: 10.4049/jimmunol.1202736
Tsang, K. Y. & Cheah, K. S. The extended chondrocyte lineage: implications for skeletal homeostasis and disorders. Curr. Opin. Cell Biol. 61, 132–140 (2019).
pubmed: 31541943 doi: 10.1016/j.ceb.2019.07.011
Long, J. T. et al. Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development. Elife 11, e76932 (2022).
pubmed: 35179487 pmcid: 8893718 doi: 10.7554/eLife.76932
Chen, J. et al. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS ONE 9, e85161 (2014).
pubmed: 24454809 pmcid: 3893188 doi: 10.1371/journal.pone.0085161
Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).
pubmed: 19841085 pmcid: 2768869 doi: 10.1084/jem.20091046
Mo, C. et al. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J. 41, e108415 (2022).
pubmed: 34957577 doi: 10.15252/embj.2021108415
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Neunaber, C. et al. Increased trabecular bone formation in mice lacking the growth factor midkine. J. Bone Miner. Res. 25, 1724–1735 (2010).
pubmed: 20200993 doi: 10.1002/jbmr.75
Jin, Q. Y. et al. Follistatin-like 1 suppresses osteoblast differentiation of bone marrow mesenchymal cells during inflammation. Arch. Oral Biol. 135, 105345 (2022).
pubmed: 35026647 doi: 10.1016/j.archoralbio.2022.105345
Bodine, P. V. et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222–1237 (2004).
pubmed: 14976225 doi: 10.1210/me.2003-0498
Kim, H. et al. Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc. Natl Acad. Sci. USA 115, E11128–E11137 (2018).
pubmed: 30385632 pmcid: 6255152 doi: 10.1073/pnas.1814044115
Zhang, Z., Jiang, W., Hu, M., Gao, R. & Zhou, X. MiR-486-3p promotes osteogenic differentiation of BMSC by targeting CTNNBIP1 and activating the Wnt/beta-catenin pathway. Biochem. Biophys. Res. Commun. 566, 59–66 (2021).
pubmed: 34118593 doi: 10.1016/j.bbrc.2021.05.098
Palmer, G. D. et al. F-spondin deficient mice have a high bone mass phenotype. PLoS ONE 9, e98388 (2014).
pubmed: 24875054 pmcid: 4038615 doi: 10.1371/journal.pone.0098388
Zou, W. et al. Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. 32, 801–813.e806 (2020).
pubmed: 33027637 pmcid: 7642038 doi: 10.1016/j.cmet.2020.09.011
Lee, E. J. et al. PTX3 stimulates osteoclastogenesis by increasing osteoblast RANKL production. J .Cell Physiol. 229, 1744–1752 (2014).
pubmed: 24664887 doi: 10.1002/jcp.24626
Yang, Y. Q. et al. The role of vascular endothelial growth factor in ossification. Int. J. Oral Sci. 4, 64–68 (2012).
pubmed: 22722639 pmcid: 3412670 doi: 10.1038/ijos.2012.33
Danjo, A. et al. Cystatin C stimulates the differentiation of mouse osteoblastic cells and bone formation. Biochem. Biophys. Res. Commun. 360, 199–204 (2007).
pubmed: 17592728 doi: 10.1016/j.bbrc.2007.06.028
Lerner, U. H. et al. Cystatin C, and inhibitor of bone resorption produced by osteoblasts. Acta Physiol. Scand. 161, 81–92 (1997).
pubmed: 9381954 doi: 10.1046/j.1365-201X.1997.d01-1933.x
Yu, B. et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-kappaB. Nat. Med 20, 1009–1017 (2014).
pubmed: 25108526 pmcid: 4159424 doi: 10.1038/nm.3586
Simic, P. et al. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J. Biol. Chem. 281, 25509–25521 (2006).
pubmed: 16798745 doi: 10.1074/jbc.M513276200
Behonick, D. J. et al. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS ONE 2, e1150 (2007).
pubmed: 17987127 pmcid: 2063465 doi: 10.1371/journal.pone.0001150
Berezovska, O. et al. Osteocalcin affects bone mineral and mechanical properties in female mice. Bone 128, 115031 (2019).
pubmed: 31401301 pmcid: 8243730 doi: 10.1016/j.bone.2019.08.004
Si, J., Wang, C., Zhang, D., Wang, B. & Zhou, Y. Osteopontin in Bone Metabolism and Bone Diseases. Med. Sci. Monit. 26, e919159 (2020).
pubmed: 31996665 pmcid: 7003659 doi: 10.12659/MSM.919159
Zhang, J. et al. Matrix Gla Protein Promotes the Bone Formation by Up-Regulating Wnt/beta-Catenin Signaling Pathway. Front. Endocrinol. 10, 891 (2019).
doi: 10.3389/fendo.2019.00891
Chen, P. C., Cheng, H. C., Yang, S. F., Lin, C. W. & Tang, C. H. The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors. Biomed. Res. Int. 2014, 437096 (2014).
pubmed: 24551846 pmcid: 3914550
Yanaka, N. et al. Novel membrane protein containing glycerophosphodiester phosphodiesterase motif is transiently expressed during osteoblast differentiation. J. Biol. Chem. 278, 43595–43602 (2003).
pubmed: 12933806 doi: 10.1074/jbc.M302867200
Roberts, F., Zhu, D., Farquharson, C. & Macrae, V. E. ENPP1 in the regulation of mineralization and beyond. Trends Biochem. Sci. 44, 616–628 (2019).
pubmed: 30799235 doi: 10.1016/j.tibs.2019.01.010
Yuan, B. et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J. Clin. Invest. 118, 722–734 (2008).
pubmed: 18172553 pmcid: 2157563
Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).
pubmed: 15864272 doi: 10.1038/nri1604
Brylka, L. J. & Schinke, T. Chemokines in physiological and pathological bone remodeling. Front. Immunol. 10, 2182 (2019).
pubmed: 31572390 pmcid: 6753917 doi: 10.3389/fimmu.2019.02182
Pinney, D. F. & Emerson, C. P. Jr. 10T1/2 cells: an in vitro model for molecular genetic analysis of mesodermal determination and differentiation. Environ. Health Perspect. 80, 221–227 (1989).
pubmed: 2466641 pmcid: 1567628 doi: 10.1289/ehp.8980221
Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).
pubmed: 25058159 pmcid: 4109854 doi: 10.1371/journal.pcbi.1003731
Osterhoff, G. et al. Bone mechanical properties and changes with osteoporosis. Injury 47, S11–S20 (2016).
pubmed: 27338221 pmcid: 4955555 doi: 10.1016/S0020-1383(16)47003-8
Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e1916 (2019).
pubmed: 31130381 pmcid: 6570562 doi: 10.1016/j.cell.2019.04.040
Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).
pubmed: 30971824 pmcid: 6607432 doi: 10.1038/s41586-019-1104-8
Yu, W. et al. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J. Clin. Invest. 131, e140214 (2021).
pubmed: 33206630 pmcid: 7810488 doi: 10.1172/JCI140214
Zhong, L. et al. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. Elife 12, e82112 (2023).
pubmed: 36779854 pmcid: 10005765 doi: 10.7554/eLife.82112
Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).
pubmed: 24953181 pmcid: 4127103 doi: 10.1016/j.stem.2014.06.008
Shu, H. S. et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 28, 2122–2136.e2123 (2021).
pubmed: 34499868 doi: 10.1016/j.stem.2021.08.010
Maruyama, K., Muramatsu, H., Ishiguro, N. & Muramatsu, T. Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis. Arthritis Rheumatol. 50, 1420–1429 (2004).
doi: 10.1002/art.20175
Rittling, S. R. et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J. Bone Miner. Res. 13, 1101–1111 (1998).
pubmed: 9661074 doi: 10.1359/jbmr.1998.13.7.1101
Chang, J. et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem. 282, 30938–30948 (2007).
pubmed: 17720811 doi: 10.1074/jbc.M702391200
Tang, M., Tian, L., Luo, G. & Yu, X. Interferon-gamma-mediated osteoimmunology. Front. Immunol. 9, 1508 (2018).
pubmed: 30008722 pmcid: 6033972 doi: 10.3389/fimmu.2018.01508
Kim, S. et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17, 1979–1991 (2003).
pubmed: 12923053 pmcid: 196253 doi: 10.1101/gad.1119303
Hopwood, B., Tsykin, A., Findlay, D. M. & Fazzalari, N. L. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 44, 87–101 (2009).
pubmed: 18840552 doi: 10.1016/j.bone.2008.08.120
Sul, O. J. et al. Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. J. Cell Physiol. 227, 1619–1627 (2012).
pubmed: 21678414 doi: 10.1002/jcp.22879
Binder, N. B. et al. Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat. Med. 15, 417–424 (2009).
pubmed: 19330010 doi: 10.1038/nm.1945
Phan, Q. T. et al. Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model. Proc. Natl Acad. Sci. USA 117, 19276–19286 (2020).
pubmed: 32719141 pmcid: 7431079 doi: 10.1073/pnas.2006093117
Liu, Z. et al. Increased osteoblastic Cxcl9 contributes to the uncoupled bone formation and resorption in postmenopausal osteoporosis. Clin. Interv. Aging 15, 1201–1212 (2020).
pubmed: 32764906 pmcid: 7381095 doi: 10.2147/CIA.S254885
Liu, P. et al. Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ. 24, 672–682 (2017).
pubmed: 28106886 pmcid: 5384024 doi: 10.1038/cdd.2016.165
Gao, Y. et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J. Clin. Invest. 117, 122–132 (2007).
pubmed: 17173138 doi: 10.1172/JCI30074
Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).
pubmed: 10911963 doi: 10.1111/j.1749-6632.2000.tb06651.x
Moreno, C. S. SOX4: the unappreciated oncogene. Semin. Cancer Biol. 67, 57–64 (2020).
pubmed: 31445218 doi: 10.1016/j.semcancer.2019.08.027
Zhang, L. et al. Suppression of Sox4 protects against myocardial ischemic injury by reduction of cardiac apoptosis in mice. J. Cell Physiol. 236, 1094–1104 (2021).
pubmed: 32657438 doi: 10.1002/jcp.29918
Collins, S. C. et al. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion. Diabetes 65, 1952–1961 (2016).
pubmed: 26993066 doi: 10.2337/db15-1489
Bhattaram, P., Muschler, G., Wixler, V. & Lefebvre, V. Inflammatory cytokines stabilize SOXC transcription factors to mediate the transformation of fibroblast-like synoviocytes in arthritic disease. Arthritis Rheumatol. 70, 371–382 (2018).
pubmed: 29193895 pmcid: 5826855 doi: 10.1002/art.40386
Takahata, Y. et al. Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5. FASEB J. 33, 619–630 (2019).
pubmed: 30016600 doi: 10.1096/fj.201800259R
Gupta, S. et al. Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc. Natl Acad. Sci. USA 117, 16481–16491 (2020).
pubmed: 32601182 pmcid: 7368314 doi: 10.1073/pnas.2003603117
Pujantell, M. & Altfeld, M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front. Immunol. 13, 986840 (2022).
pubmed: 36189206 pmcid: 9522975 doi: 10.3389/fimmu.2022.986840
Webb, K. et al. Sex and pubertal differences in the type 1 interferon pathway associate with both x chromosome number and serum sex hormone concentration. Front. Immunol. 9, 3167 (2018).
pubmed: 30705679 doi: 10.3389/fimmu.2018.03167
Yuan, S. G. et al. Bindarit reduces bone loss in ovariectomized mice by inhibiting CCL2 and CCL7 expression via the NF-kappaB signaling pathway. Orthop. Surg. 14, 1203–1216 (2022).
pubmed: 35470579 pmcid: 9163972 doi: 10.1111/os.13252
Yang, X. W. et al. Elevated CCL2/MCP-1 levels are related to disease severity in postmenopausal osteoporotic patients. Clin. Lab. 62, 2173–2181 (2016).
pubmed: 28164676 doi: 10.7754/Clin.Lab.2016.160408
Shigehara, K., Izumi, K., Kadono, Y. & Mizokami, A. Testosterone and bone health in men: a narrative review. J. Clin. Med. 10, 530 (2021).
pubmed: 33540526 pmcid: 7867125 doi: 10.3390/jcm10030530
Noh, T. et al. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner. PLoS ONE 4, e5438 (2009).
pubmed: 19412553 pmcid: 2673053 doi: 10.1371/journal.pone.0005438
Albiol, L. et al. Effects of long-term sclerostin deficiency on trabecular bone mass and adaption to limb loading differ in male and female mice. Calcif. Tissue Int. 106, 415–430 (2020).
pubmed: 31873756 doi: 10.1007/s00223-019-00648-4
Choi, R. B. & Robling, A. G. The Wnt pathway: an important control mechanism in bone’s response to mechanical loading. Bone 153, 116087 (2021).
pubmed: 34271473 pmcid: 8478810 doi: 10.1016/j.bone.2021.116087
Liu, X. H., Kirschenbaum, A., Yao, S. & Levine, A. C. Androgens promote preosteoblast differentiation via activation of the canonical Wnt signaling pathway. Ann. N. Y. Acad. Sci. 1116, 423–431 (2007).
pubmed: 17646262 doi: 10.1196/annals.1402.017
Penzo-Mendez, A., Dy, P., Pallavi, B. & Lefebvre, V. Generation of mice harboring a Sox4 conditional null allele. Genesis 45, 776–780 (2007).
pubmed: 18064674 doi: 10.1002/dvg.20358
Logan, M. et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).
pubmed: 12112875 doi: 10.1002/gene.10092
Rodda, S. J. & McMahon, A. P. Distinct roles for hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).
pubmed: 16854976 doi: 10.1242/dev.02480
Gebhard, S. et al. Specific expression of Cre recombinase in hypertrophic cartilage under the control of a BAC-Col10a1 promoter. Matrix Biol. 27, 693–699 (2008).
pubmed: 18692570 pmcid: 4013020 doi: 10.1016/j.matbio.2008.07.001
Henry, S. P. et al. Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 47, 805–814 (2009).
pubmed: 19830818 pmcid: 3951921 doi: 10.1002/dvg.20564
Sophocleous, A. & Idris, A. I. Ovariectomy/orchiectomy in rodents. Methods Mol. Biol. 1914, 261–267 (2019).
pubmed: 30729469 doi: 10.1007/978-1-4939-8997-3_13
Zambrowicz, B. P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl Acad. Sci. USA 94, 3789–3794 (1997).
pubmed: 9108056 pmcid: 20519 doi: 10.1073/pnas.94.8.3789
Chu, V. T. et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 16, 4 (2016).
pubmed: 26772810 pmcid: 4715285 doi: 10.1186/s12896-016-0234-4
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).
pubmed: 11299042 pmcid: 31338 doi: 10.1186/1471-213X-1-4
Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).
pubmed: 1660837 doi: 10.1016/0378-1119(91)90434-D
Wheeler, R. L., Hampton, A. D. & Langley, N. R. The effects of body mass index and age on cross-sectional properties of the femoral neck. Clin. Anat. 28, 1048–1057 (2015).
pubmed: 26385008 doi: 10.1002/ca.22632
Masson, P. Some histological methods. Trichrome stainings and their preliminary technique. J. Tech. Meth. 12, 75–90 (1929).
Cole, A. A. & Walters, L. M. Tartrate-resistant acid phosphatase in bone and cartilage following decalcification and cold-embedding in plastic. J. Histochem. Cytochem. 35, 203–206 (1987).
pubmed: 3540104 doi: 10.1177/35.2.3540104
de Charleroy, C., Haseeb, A. & Lefebvre, V. Preparation of adult mouse skeletal tissue sections for RNA in situ hybridization. Methods Mol. Biol. 2245, 85–92 (2021).
pubmed: 33315196 pmcid: 9063681 doi: 10.1007/978-1-0716-1119-7_6
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e324 (2019).
pubmed: 30954475 pmcid: 6853612 doi: 10.1016/j.cels.2019.03.003
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778 pmcid: 8454663
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).
pubmed: 29914354 pmcid: 6007078 doi: 10.1186/s12864-018-4772-0
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
pubmed: 30089906 pmcid: 6130801 doi: 10.1038/s41586-018-0414-6
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
pubmed: 32747759 doi: 10.1038/s41587-020-0591-3
Li, S. et al. A relay velocity model infers cell-dependent RNA velocity. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01728-5 (2023).
doi: 10.1038/s41587-023-01728-5 pubmed: 38082081 pmcid: 10791576

Auteurs

Marco Angelozzi (M)

Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. angelozzim@chop.edu.

Anirudha Karvande (A)

Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Véronique Lefebvre (V)

Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. lefebvrev1@chop.edu.

Classifications MeSH