LncRNA GAS8-AS1 dinucleotide genetic variant
DTC
Dinucleotide variant
GAS8-AS1
Mutation
Thyroid cancer
lncRNA
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
05 Apr 2024
05 Apr 2024
Historique:
received:
31
01
2024
accepted:
24
03
2024
medline:
6
4
2024
pubmed:
6
4
2024
entrez:
5
4
2024
Statut:
aheadofprint
Résumé
Long noncoding RNAs (lncRNAs) play an essential role in the epigenetic regulation of various key genes involved in vital cellular functions. A somatic dinucleotide mutation in the lncRNA GAS8-AS1 was reported in Chinese papillary thyroid cancer. However, GAS8-AS1 dinucleotide alteration and its impact have never been explored in differentiated thyroid cancers and other populations. We extracted genomic DNA from 265 DTCs and 97 normal healthy subjects, PCR amplified and Sanger sequenced to examine the GAS8-AS1 dinucleotide alteration. Calculated genotype/allele frequency to test Hardy-Weinberg Equilibrium (HWE) and performed a genetic model of inheritance to determine its association with DTC risk. Correlated the GAS8-AS1 dinucleotide variant distribution with clinical characteristics to find the association. Predicted GAS8-AS1 RNA secondary structure for wild type and variant using RemuRNA and RNAfold to assess the conformational changes. GAS8-AS1 dinucleotide alteration (n.713A > G, rs55742939; n.714T > C, rs61118444) identified in DTCs is a germline variant not somatic. The GAS8-AS1 genotype and allele frequency significantly deviated for HWE in DTCs (χ2 = 37.954; p = 0.0001) though not associated with its risk. Dinucleotide variant distribution was remarkably associated with early-stage disease (p = 0.002), lymph node (p = 0.01), and distant metastasis (p = 0.01) in DTCs. The GAS8-AS1 bearing dinucleotide variant markedly showed conformational change compared to that of its wild type. These findings indicate that GAS8-AS1 is genetically deregulated and implicated in several stages of DTC tumorigenesis suggesting it could be a promising prognostic biomarker in DTCs.
Identifiants
pubmed: 38580894
doi: 10.1007/s12020-024-03802-7
pii: 10.1007/s12020-024-03802-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
G. Pellegriti, F. Frasca, C. Regalbuto, S. Squatrito, R. Vigneri, Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013, 965212 (2013). https://doi.org/10.1155/2013/965212
doi: 10.1155/2013/965212
pubmed: 23737785
pmcid: 3664492
K. LeClair, K.J.L. Bell, L. Furuya-Kanamori, S.A. Doi, D.O. Francis, L. Davies, Evaluation of Gender Inequity in Thyroid Cancer Diagnosis: Differences by Sex in US Thyroid Cancer Incidence Compared With a Meta-analysis of Subclinical Thyroid Cancer Rates at Autopsy. JAMA Intern Med. 181(10), 1351–1358 (2021). https://doi.org/10.1001/jamainternmed.2021.4804
doi: 10.1001/jamainternmed.2021.4804
pubmed: 34459841
A.S. Alzahrani, H. Alomar, N. Alzahrani, Thyroid Cancer in Saudi Arabia: A Histopathological and Outcome Study. Int J. Endocrinol. 2017, 8423147 (2017). https://doi.org/10.1155/2017/8423147
doi: 10.1155/2017/8423147
pubmed: 28348588
pmcid: 5350345
C. Christofer Juhlin, O. Mete, Z.W. Baloch, The 2022 WHO classification of thyroid tumors: novel concepts in nomenclature and grading. Endocr. Relat. Cancer 30(2), e220293 (2023). https://doi.org/10.1530/erc-22-0293 .
doi: 10.1530/erc-22-0293
pubmed: 36445235
M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13(3), 184–199 (2013). https://doi.org/10.1038/nrc3431
doi: 10.1038/nrc3431
pubmed: 23429735
pmcid: 3791171
A.K. Murugan, E. Qasem, H. Al-Hindi, Y. Shi, A.S. Alzahrani, Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer. J. Transl. Med 14(1), 204 (2016). https://doi.org/10.1186/s12967-016-0958-x
doi: 10.1186/s12967-016-0958-x
pubmed: 27387551
pmcid: 4936197
M. Grieco, M. Santoro, M.T. Berlingieri, R.M. Melillo, R. Donghi, I. Bongarzone, M.A. Pierotti, G. Della Porta, A. Fusco, G. Vecchio, PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60(4), 557–563 (1990). https://doi.org/10.1016/0092-8674(90)90659-3
doi: 10.1016/0092-8674(90)90659-3
pubmed: 2406025
P. Raman, R.J. Koenig, Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 10(10), 616–623 (2014). https://doi.org/10.1038/nrendo.2014.115 .
doi: 10.1038/nrendo.2014.115
pubmed: 25069464
pmcid: 4290886
X. Liu, J. Bishop, Y. Shan, S. Pai, D. Liu, A.K. Murugan, H. Sun, A.K. El-Naggar, M. Xing, Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 20(4), 603–610 (2013). https://doi.org/10.1530/ERC-13-0210
doi: 10.1530/ERC-13-0210
pubmed: 23766237
pmcid: 3782569
A.K. Murugan, J. Dong, J. Xie, M. Xing, Uncommon GNAQ, MMP8, AKT3, EGFR, and PIK3R1 mutations in thyroid cancers. Endocr. Pathol. 22(2), 97–102 (2011). https://doi.org/10.1007/s12022-011-9155-x
doi: 10.1007/s12022-011-9155-x
pubmed: 21487925
pmcid: 3133631
Agrawal et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014). https://doi.org/10.1016/j.cell.2014.09.050
doi: 10.1016/j.cell.2014.09.050
pmcid: 4243044
A.K. Murugan, E. Qasem, H. Al-Hindi, A.S. Alzahrani, GPCR-mediated PI3K pathway mutations in pediatric and adult thyroid cancer. Oncotarget 10(41), 4107–4124 (2019). https://doi.org/10.18632/oncotarget.26993
doi: 10.18632/oncotarget.26993
pubmed: 31289610
pmcid: 6609254
I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C. Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor, R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest 126(3), 1052–1066 (2016). https://doi.org/10.1172/JCI85271
doi: 10.1172/JCI85271
pubmed: 26878173
pmcid: 4767360
A.K. Murugan, M. Xing, Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 71(13), 4403–4411 (2011). https://doi.org/10.1158/0008-5472.CAN-10-4041
doi: 10.1158/0008-5472.CAN-10-4041
pubmed: 21596819
pmcid: 3129369
A.K. Murugan, R. Liu, M. Xing, Identification and characterization of two novel oncogenic mTOR mutations. Oncogene 38(26), 5211–5226 (2019). https://doi.org/10.1038/s41388-019-0787-5
doi: 10.1038/s41388-019-0787-5
pubmed: 30918329
pmcid: 6597304
R. Lirov, F.P. Worden, M.S. Cohen, The Treatment of Advanced Thyroid Cancer in the Age of Novel Targeted Therapies. Drugs 77(7), 733–745 (2017). https://doi.org/10.1007/s40265-017-0733-1
doi: 10.1007/s40265-017-0733-1
pubmed: 28361210
pmcid: 5683961
J.W. Wei, K. Huang, C. Yang, C.S. Kang, Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 37(1), 3–9 (2017). https://doi.org/10.3892/or.2016.5236
doi: 10.3892/or.2016.5236
pubmed: 27841002
A.K. Murugan, A.K. Munirajan, A.S. Alzahrani, MicroRNAs: Modulators of the Ras Oncogenes in Oral Cancer. J. Cell Physiol. 231(7), 1424–1431 (2016). https://doi.org/10.1002/jcp.25269
doi: 10.1002/jcp.25269
pubmed: 26620726
J.S. Mattick, P.P. Amaral, P. Carninci, S. Carpenter, H.Y. Chang, L.L. Chen, R. Chen, C. Dean, M.E. Dinger, K.A. Fitzgerald, T.R. Gingeras, M. Guttman, T. Hirose, M. Huarte, R. Johnson, C. Kanduri, P. Kapranov, J.B. Lawrence, J.T. Lee, J.T. Mendell, T.R. Mercer, K.J. Moore, S. Nakagawa, J.L. Rinn, D.L. Spector, I. Ulitsky, Y. Wan, J.E. Wilusz, M. Wu, Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023). https://doi.org/10.1038/s41580-022-00566-8
doi: 10.1038/s41580-022-00566-8
pubmed: 36596869
A.K. Murugan, A.K. Munirajan, A.S. Alzahrani, Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr. Relat. Cancer 25(2), R59–R82 (2018). https://doi.org/10.1530/ERC-17-0188
W. Pan, L. Zhou, M. Ge, B. Zhang, X. Yang, X. Xiong, G. Fu, J. Zhang, X. Nie, H. Li, X. Tang, J. Wei, M. Shao, J. Zheng, Q. Yuan, W. Tan, C. Wu, M. Yang, D. Lin, Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations. Hum. Mol. Genet 25(9), 1875–1884 (2016). https://doi.org/10.1093/hmg/ddw056
doi: 10.1093/hmg/ddw056
pubmed: 26941397
Z. Li, G. Yue, M. Li, D. Yang, C. Yue, W. Hu, H. Lu, LncRNA GAS8-AS1 is a Novel Prognostic and Diagnostic Biomarker for Pancreatic Cancer. Crit. Rev. Eukaryot. Gene Expr. 32(4), 83–92 (2022). https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022039770
doi: 10.1615/CritRevEukaryotGeneExpr.2022039770
pubmed: 35695668
W. Pan, N. Zhang, W. Liu, J. Liu, L. Zhou, Y. Liu, M. Yang, The long noncoding RNA GAS8-AS1 suppresses hepatocarcinogenesis by epigenetically activating the tumor suppressor GAS8. J. Biol. Chem. 293(44), 17154–17165 (2018). https://doi.org/10.1074/jbc.RA118.003055
doi: 10.1074/jbc.RA118.003055
pubmed: 30228180
pmcid: 6222094
Y. Zhao, Y. Chu, J. Sun, R. Song, Y. Li, F. Xu, LncRNA GAS8-AS inhibits colorectal cancer (CRC) cell proliferation by downregulating lncRNA AFAP1-AS1. Gene 710, 140–144 (2019). https://doi.org/10.1016/j.gene.2019.05.040
doi: 10.1016/j.gene.2019.05.040
pubmed: 31132513
Y. Qin, W. Sun, H. Zhang, P. Zhang, Z. Wang, W. Dong, L. He, T. Zhang, L. Shao, W. Zhang, C. Wu, LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer. Endocrine 59(3), 555–564 (2018). https://doi.org/10.1007/s12020-017-1520-1
doi: 10.1007/s12020-017-1520-1
pubmed: 29327301
A.S. Alzahrani, M. Alswailem, Y. Moria, R. Almutairi, M. Alotaibi, A.K. Murugan, E. Qasem, B. Alghamdi, H. Al-Hindi, Lung Metastasis in Pediatric Thyroid Cancer: Radiological Pattern, Molecular Genetics, Response to Therapy, and Outcome. J. Clin. Endocrinol. Metab. 104(1), 103–110 (2019). https://doi.org/10.1210/jc.2018-01690
doi: 10.1210/jc.2018-01690
pubmed: 30272236
M. Miladi, M. Raden, S. Diederichs, R. Backofen, MutaRNA: analysis and visualization of mutation-induced changes in RNA structure. Nucleic Acids Res 48(W1), W287–W291 (2020). https://doi.org/10.1093/nar/gkaa331
doi: 10.1093/nar/gkaa331
pubmed: 32392303
pmcid: 7319544
M. Raden, S.M. Ali, O.S. Alkhnbashi, A. Busch, F. Costa, J.A. Davis, F. Eggenhofer, R. Gelhausen, J. Georg, S. Heyne, M. Hiller, K. Kundu, R. Kleinkauf, S.C. Lott, M.M. Mohamed, A. Mattheis, M. Miladi, A.S. Richter, S. Will, J. Wolff, P.R. Wright, R. Backofen, Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 46(W1), W25–W29 (2018). https://doi.org/10.1093/nar/gky329
doi: 10.1093/nar/gky329
pubmed: 29788132
pmcid: 6030932
R. Salari, C. Kimchi-Sarfaty, M.M. Gottesman, T.M. Przytycka, Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies. Nucleic Acids Res 41(1), 44–53 (2013). https://doi.org/10.1093/nar/gks1009
doi: 10.1093/nar/gks1009
pubmed: 23125360
R. Lorenz, S.H. Bernhart, C. Höner Zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler, I.L. Hofacker, ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011). https://doi.org/10.1186/1748-7188-6-26
doi: 10.1186/1748-7188-6-26
pubmed: 22115189
pmcid: 3319429
M. Xing, R. Liu, X. Liu, A.K. Murugan, G. Zhu, M.A. Zeiger, S. Pai, J. Bishop, BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 32(25), 2718–2726 (2014). https://doi.org/10.1200/JCO.2014.55.5094
doi: 10.1200/JCO.2014.55.5094
pubmed: 25024077
pmcid: 4145183
D.L. Zhou, Q. Liu, B.H. Xu, Y. Li, X. Su, Z.L. Ye, X. Zhang, J.L. Peng, L. Deng, T. Tang, Q. Shao, J.J. Ma, X.H. Yang, C.Y. He, lncRNA GAS8-AS1 genetic alterations in papillary thyroid carcinoma and their clinical significance. Cancer Biomark. 29(2), 255–264 (2020). https://doi.org/10.3233/CBM-191071
doi: 10.3233/CBM-191071
pubmed: 32675393
D. Zhang, X. Liu, B. Wei, G. Qiao, T. Jiang, Z. Chen, Plasma lncRNA GAS8-AS1 as a Potential Biomarker of Papillary Thyroid Carcinoma in Chinese Patients. Int J Endocrinol. 2017, 2645904 (2017). https://doi.org/10.1155/2017/2645904
doi: 10.1155/2017/2645904
pubmed: 28781594
pmcid: 5525075