The time-domain Cartesian multipole expansion of electromagnetic fields.
Electromagnetic radiation
Maxwell’s equations
Multipole expansion
Partial differential equations
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 Apr 2024
06 Apr 2024
Historique:
received:
10
01
2024
accepted:
01
04
2024
medline:
7
4
2024
pubmed:
7
4
2024
entrez:
6
4
2024
Statut:
epublish
Résumé
Time-domain solutions of Maxwell's equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are computationally intensive and require significant memory. Semi-analytical solutions (e.g., series expansion), such as those provided by the current theoretical framework of the multipole expansion, can be discouraging for practical case studies. This paper shows how sophisticated mathematical tools standard in modern physics can be leveraged to find semi-analytical solutions for arbitrary localized time-varying current distributions thanks to the novel time-domain Cartesian multipole expansion. We present the theory, apply it to a concrete application involving the imaging of an intricate current distribution, verify our results with an existing analytical approach, and compare the proposed method to a finite-difference time-domain numerical simulation. Thanks to the concept of current "pixels" introduced in this paper, we derive time-domain semi-analytical solutions of Maxwell's equations for arbitrary planar geometries.
Identifiants
pubmed: 38582896
doi: 10.1038/s41598-024-58570-1
pii: 10.1038/s41598-024-58570-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8084Subventions
Organisme : Technology Innovation Institute, United Arab Emirates
ID : TII/DERC/2254/2021
Informations de copyright
© 2024. The Author(s).
Références
Schwartz, L. Mathematics for the Physical Sciences (Hermann, Paris, 1966).
van Dijk, G. Distribution Theory: Convolution, Fourier Transform, and Laplace Transform (De Gruyter, 2013).
Davidon, W. C. Time-dependent multipole analysis. J. Phys. A: Math. Nucl. Gen. 6, 1635–1646. https://doi.org/10.1088/0305-4470/6/11/004 (1973).
doi: 10.1088/0305-4470/6/11/004
Campbell, W. B., Macek, J. & Morgan, T. A. Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields. Phys. Rev. D 15, 2156–2164. https://doi.org/10.1103/PhysRevD.15.2156 (1977).
doi: 10.1103/PhysRevD.15.2156
Hansen, T. B. & Norris, A. N. Exact complex source representations of transient radiation. Wave Motion 26, 101–115. https://doi.org/10.1016/S0165-2125(97)00021-8 (1997).
doi: 10.1016/S0165-2125(97)00021-8
Heyman, E. Time-dependent plane-wave spectrum representations for radiation from volume source distributions. J. Math. Phys. 37, 658–681. https://doi.org/10.1063/1.531435 (1996).
doi: 10.1063/1.531435
Marengo, E. A. & Devaney, A. J. Time-dependent plane wave and multipole expansions of the electromagnetic field. J. Math. Phys. 39, 3643–3660. https://doi.org/10.1063/1.532457 (1998).
doi: 10.1063/1.532457
Shlivinski, A. & Heyman, E. Time-domain near-field analysis of short-pulse antennas I. Spherical wave (multipole) expansion. IEEE Transact. Antennas Propag. 47, 271–279. https://doi.org/10.1109/8.761066 (1999).
doi: 10.1109/8.761066
Van Bladel, J. G. Some remarks on Green’s dyadic for infinite space. IRE Transacti. Antennas Propag. 9, 563–566. https://doi.org/10.1109/TAP.1961.1145064 (1961).
doi: 10.1109/TAP.1961.1145064
Van Bladel, J. G. Singular Electromagnetic Fields and Sources (John Wiley & Sons, 1996).
Yaghjian, A. D. A delta-distribution derivation of the electric field in the source region. Electromagnetics 2, 161–167. https://doi.org/10.1080/02726348208915162 (1982).
doi: 10.1080/02726348208915162
Kocher, C. A. Point-multipole expansions for charge and current distributions. Am. J. Phys. 46, 578–579. https://doi.org/10.1119/1.11282 (1978).
doi: 10.1119/1.11282
Rowe, E. G. P. Spherical delta functions and multipole expansions. J. Math. Phys. 19, 1962–1968. https://doi.org/10.1063/1.523927 (1978).
doi: 10.1063/1.523927
Rowe, E. G. P. The elementary sources of multipole radiation. J. Phys. A Math. Nucl. Gen. 12, 245–255. https://doi.org/10.1088/0305-4470/12/2/013 (1979).
doi: 10.1088/0305-4470/12/2/013
Radescu, E. & Vaman, J. A. G. Cartesian multipole expansions and tensorial identities. Prog. Electromagn. Res. B 36, 89–111. https://doi.org/10.2528/PIERB11090702 (2012).
doi: 10.2528/PIERB11090702
Damour, T. & Iyer, B. R. Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors. Phys. Rev. D 43, 3259–3272. https://doi.org/10.1103/PhysRevD.43.3259 (1991).
doi: 10.1103/PhysRevD.43.3259
Wänsche, A. Schwache Konvergenz von Multipolentwicklungen. ZAMM–J. Appl. Math. Mech. 55, 301–319. https://doi.org/10.1002/zamm.19750550604 (1975).
doi: 10.1002/zamm.19750550604
Jackson, J. D. Classical Electrodynamics (J. Wiley & Sons, New York, 1999), 3rd edn.
Stampfer, F. & Wagner, P. A mathematically rigorous formulation of the pseudopotential method. J. Math. Anal. Appl. 342, 202–212. https://doi.org/10.1016/j.jmaa.2007.12.004 (2008).
doi: 10.1016/j.jmaa.2007.12.004
Gsponer, A. Distributions in spherical coordinates with applications to classical electrodynamics. Eur. J. Phys. 28, 267–275. https://doi.org/10.1088/0143-0807/28/2/012 (2007).
doi: 10.1088/0143-0807/28/2/012
Yang, Y. & Estrada, R. Distributions in spaces with thick points. J. Math. Anal. Appl. 401, 821–835. https://doi.org/10.1016/j.jmaa.2012.12.045 (2013).
doi: 10.1016/j.jmaa.2012.12.045
Brackx, F., Sommen, F. & Vindas, J. On the radial derivative of the delta distribution. Complex Anal. Oper. Theory 11, 1035–1057. https://doi.org/10.1007/s11785-017-0638-8 (2017).
doi: 10.1007/s11785-017-0638-8
Mitrea, D. Distributions, Partial Differential Equations, and Harmonic Analysis (Universitext Springer-Verlag, New York, 2013).
doi: 10.1007/978-1-4614-8208-6
Lechner, K. Classical Electrodynamics: A Modern Perspective (Springer, Cham, Switzerland, 2018).
doi: 10.1007/978-3-319-91809-9
Oskooi, A. F. et al. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702. https://doi.org/10.1016/j.cpc.2009.11.008 (2010).
doi: 10.1016/j.cpc.2009.11.008
Carminati, R., Pierrat, R., Rosny, J. D. & Fink, M. Theory of the time reversal cavity for electromagnetic fields. Opt. Lett. 32, 3107–3109. https://doi.org/10.1364/OL.32.003107 (2007).
doi: 10.1364/OL.32.003107
pubmed: 17975612
Harrington, R. F. Time-Harmonic Electromagnetics (Wiley-IEEE Press, New York [etc.], 2001).
Parker, E. An apparent paradox concerning the field of an ideal dipole. Eur. J. Phys. 38, 025205. https://doi.org/10.1088/1361-6404/aa55a6 (2017).
doi: 10.1088/1361-6404/aa55a6