Clinicopathological and molecular predictors of [
Disease detection
Early breast cancer
HER2-positive
Predictors
[18F]FDG-PET
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
08 Apr 2024
08 Apr 2024
Historique:
received:
01
12
2023
accepted:
10
03
2024
medline:
8
4
2024
pubmed:
8
4
2024
entrez:
8
4
2024
Statut:
aheadofprint
Résumé
The PHERGain study (NCT03161353) is assessing early metabolic responses to neoadjuvant treatment with trastuzumab-pertuzumab and chemotherapy de-escalation using a [ A total of 500 patients with HER2 + EBC screened in the PHERGain trial with a tumor size > 1.5 cm by magnetic resonance imaging (MRI) were included in the RESPONSE substudy. PET[-] criteria entailed the absence of ≥ 1 breast lesion with maximum standardized uptake value (SUVmax) ≥ 1.5 × SUVmean liver + 2 standard deviation. Among 75 PET[-] patients screened, 21 with SUVmax levels < 2.5 were randomly selected and matched with 21 PET[+] patients with SUVmax levels ≥ 2.5 based on patient characteristics associated with [ Median SUVmax at baseline was 7.2 (range, 1-39.3). Among all analyzed patients, a higher SUVmax was associated with a higher tumor stage, larger tumor size, lymph node involvement, hormone receptor-negative status, higher HER2 protein expression, increased Ki67 proliferation index, and higher histological grade (p < 0.05). [ These results highlight the clinical, biological, and metabolic heterogeneity of HER2+ breast cancer, which may facilitate the selection of HER2+ EBC patients likely to benefit from [ Clinicaltrials.gov; NCT03161353; registration date: May 15, 2017.
Sections du résumé
BACKGROUND
BACKGROUND
The PHERGain study (NCT03161353) is assessing early metabolic responses to neoadjuvant treatment with trastuzumab-pertuzumab and chemotherapy de-escalation using a [
METHODS
METHODS
A total of 500 patients with HER2 + EBC screened in the PHERGain trial with a tumor size > 1.5 cm by magnetic resonance imaging (MRI) were included in the RESPONSE substudy. PET[-] criteria entailed the absence of ≥ 1 breast lesion with maximum standardized uptake value (SUVmax) ≥ 1.5 × SUVmean liver + 2 standard deviation. Among 75 PET[-] patients screened, 21 with SUVmax levels < 2.5 were randomly selected and matched with 21 PET[+] patients with SUVmax levels ≥ 2.5 based on patient characteristics associated with [
RESULTS
RESULTS
Median SUVmax at baseline was 7.2 (range, 1-39.3). Among all analyzed patients, a higher SUVmax was associated with a higher tumor stage, larger tumor size, lymph node involvement, hormone receptor-negative status, higher HER2 protein expression, increased Ki67 proliferation index, and higher histological grade (p < 0.05). [
CONCLUSIONS
CONCLUSIONS
These results highlight the clinical, biological, and metabolic heterogeneity of HER2+ breast cancer, which may facilitate the selection of HER2+ EBC patients likely to benefit from [
TRIAL REGISTRATION
BACKGROUND
Clinicaltrials.gov; NCT03161353; registration date: May 15, 2017.
Identifiants
pubmed: 38587643
doi: 10.1007/s00259-024-06683-0
pii: 10.1007/s00259-024-06683-0
doi:
Banques de données
ClinicalTrials.gov
['NCT03161353']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : F. Hoffmann-La Roche
ID : SRD-0120112
Informations de copyright
© 2024. The Author(s).
Références
Hassett MJ, Li H, Burstein HJ, Punglia RS. Neoadjuvant treatment strategies for HER2-positive breast cancer: cost-effectiveness and quality of life outcomes. Breast Cancer Res Treat. 2020;181:43–51. https://doi.org/10.1007/s10549-020-05587-5 .
doi: 10.1007/s10549-020-05587-5
pubmed: 32185586
Schettini F, Prat A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast. 2021;59:339–50. https://doi.org/10.1016/j.breast.2021.07.019 .
doi: 10.1016/j.breast.2021.07.019
pubmed: 34392185
pmcid: 8374722
González-Santiago S, Saura C, Ciruelos E, et al. Real-world effectiveness of dual HER2 blockade with pertuzumab and trastuzumab for neoadjuvant treatment of HER2-positive early breast cancer (The NEOPETRA Study). Breast Cancer Res Treat. 2020;184:469–79. https://doi.org/10.1007/s10549-020-05866-1 .
doi: 10.1007/s10549-020-05866-1
pubmed: 32876911
Lee MI, Jung YJ, Kim DI, et al. Prognostic value of SUVmax in breast cancer and comparative analyses of molecular subtypes: a systematic review and meta-analysis. Medicine (Baltimore). 2021;100: e26745. https://doi.org/10.1097/MD.0000000000026745 .
doi: 10.1097/MD.0000000000026745
pubmed: 34397816
Pérez-García JM, Gebhart G, Ruiz Borrego M, et al. Chemotherapy de-escalation using an 18F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): a multicentre, randomised, open-label, non-comparative, phase 2 trial. Lancet Oncol. 2021;22:858–71. https://doi.org/10.1016/S1470-2045(21)00122-4 .
doi: 10.1016/S1470-2045(21)00122-4
pubmed: 34019819
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72. https://doi.org/10.1016/S0140-6736(13)62422-8 .
doi: 10.1016/S0140-6736(13)62422-8
pubmed: 24529560
Antunovic L, De Sanctis R, Cozzi L, et al. PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2019;46:1468–77. https://doi.org/10.1007/s00259-019-04313-8 .
doi: 10.1007/s00259-019-04313-8
pubmed: 30915523
Ming Y, Wu N, Qian T, et al. Progress and future trends in PET/CT and PET/MRI molecular imaging approaches for breast cancer. Front Oncol. 2020;10:1301. https://doi.org/10.3389/fonc.2020.01301 .
doi: 10.3389/fonc.2020.01301
pubmed: 32903496
pmcid: 7435066
Liu Q, Wang C, Li P, et al. The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review and meta-analysis. Biomed Res Int. 2016;2016:3746232. https://doi.org/10.1155/2016/3746232 .
doi: 10.1155/2016/3746232
pubmed: 26981529
pmcid: 4770138
Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res. 2020;26:2838–48. https://doi.org/10.1158/1078-0432.CCR-19-3492 .
doi: 10.1158/1078-0432.CCR-19-3492
pubmed: 32046998
pmcid: 7299787
Zhao F, Huo X, Wang M, et al. Comparing biomarkers for predicting pathological responses to neoadjuvant therapy in HER2-positive breast cancer: a systematic review and meta-analysis. Front Oncol. 2021;11: 731148. https://doi.org/10.3389/fonc.2021.731148 .
doi: 10.3389/fonc.2021.731148
pubmed: 34778044
pmcid: 8581664
Coudert B, Pierga J-Y, Mouret-Reynier M-A, et al. Use of [(18)F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [(18)F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. Lancet Oncol. 2014;15:1493–502. https://doi.org/10.1016/S1470-2045(14)70475-9 .
doi: 10.1016/S1470-2045(14)70475-9
pubmed: 25456368
Murakami W, Tozaki M, Sasaki M, et al. Correlation between 18F-FDG uptake on PET/MRI and the level of tumor-infiltrating lymphocytes (TILs) in triple-negative and HER2-positive breast cancer. Eur J Radiol. 2020;123: 108773. https://doi.org/10.1016/j.ejrad.2019.108773 .
doi: 10.1016/j.ejrad.2019.108773
pubmed: 31918248
Mori M, Fujioka T, Kubota K, et al. Relationship between prognostic stage in breast cancer and fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography. J Clin Med. 2021;10:3173. https://doi.org/10.3390/jcm10143173 .
doi: 10.3390/jcm10143173
pubmed: 34300339
pmcid: 8307215
Arslan E, Çermik TF, Trabulus FDC, et al. Role of 18F-FDG PET/CT in evaluating molecular subtypes and clinicopathological features of primary breast cancer. Nucl Med Commun. 2018;39:680–90. https://doi.org/10.1097/MNM.0000000000000856 .
doi: 10.1097/MNM.0000000000000856
pubmed: 29893750
Groheux D, Cochet A, Humbert O, et al.
doi: 10.2967/jnumed.115.157859
pubmed: 26834096
Surov A, Meyer HJ, Wienke A. Associations between PET parameters and expression of Ki-67 in breast cancer. Transl Oncol. 2019;12:375–80. https://doi.org/10.1016/j.tranon.2018.11.005 .
doi: 10.1016/j.tranon.2018.11.005
pubmed: 30522044
AbdElaal A, Zaher AM, Abdelgawad MI, et al. Correlation of primary tumor metabolic parameters with clinical, histopathological and molecular characteristics in breast cancer patients at pre-operative staging FDG-PET/CT study. Egypt J Radiol Nucl Med. 2021;52:171.
doi: 10.1186/s43055-021-00548-4
Groheux D, Giacchetti S, Hatt M, et al. HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer. 2013;109:1157–64. https://doi.org/10.1038/bjc.2013.469 .
doi: 10.1038/bjc.2013.469
pubmed: 23942075
pmcid: 3778311
Groheux D, Hindie E. Breast cancer: initial workup and staging with FDG PET/CT. Clin Transl Imaging. 2021;9:221–31. https://doi.org/10.1007/s40336-021-00426-z .
doi: 10.1007/s40336-021-00426-z
pubmed: 33937141
pmcid: 8075837
Önner H, Canaz F, Dinçer M, et al. Which of the fluorine-18 fluorodeoxyglucose positron emission tomography/computerized tomography parameters are better associated with prognostic factors in breast cancer? Medicine (Baltimore). 2019;98: e15925. https://doi.org/10.1097/MD.0000000000015925 .
doi: 10.1097/MD.0000000000015925
pubmed: 31145358
Groheux D, Giacchetti S, Moretti J-L, et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–35. https://doi.org/10.1007/s00259-010-1640-9 .
doi: 10.1007/s00259-010-1640-9
pubmed: 21057787
de Azambuja E, Holmes AP, Piccart-Gebhart M, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15:1137–46. https://doi.org/10.1016/S1470-2045(14)70320-1 .
doi: 10.1016/S1470-2045(14)70320-1
pubmed: 25130998
Kos Z, Roblin E, Kim RS, et al. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer. 2020;6:17. https://doi.org/10.1038/s41523-020-0156-0 .
doi: 10.1038/s41523-020-0156-0
pubmed: 32411819
pmcid: 7217863
Llombart-Cussac A, Cortés J, Paré L, et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group, multicentre, phase 2 trial. Lancet Oncol. 2017;18:545–54. https://doi.org/10.1016/S1470-2045(17)30021-9 .
doi: 10.1016/S1470-2045(17)30021-9
pubmed: 28238593
Jh O, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. 2016;280:576–84. https://doi.org/10.1148/radiol.2016142043 .
doi: 10.1148/radiol.2016142043
Kitajima K, Miyoshi Y, Sekine T, et al. Harmonized pretreatment quantitative volume-based FDG-PET/CT parameters for prognosis of stage I-III breast cancer: multicenter study. Oncotarget. 2021;12:95-105. https://doi.org/10.18632/oncotarget.27851 .
doi: 10.18632/oncotarget.27851
pubmed: 33520114
pmcid: 7825640
Hwang HW, Jung H, Hyeon J, et al. A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. Breast Cancer Res Treat. 2019;173:255–66. https://doi.org/10.1007/s10549-018-4981-x .
doi: 10.1007/s10549-018-4981-x
pubmed: 30324273
Schettini F, Pascual T, Conte B, et al. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2020;84: 101965. https://doi.org/10.1016/j.ctrv.2020.101965 .
doi: 10.1016/j.ctrv.2020.101965
pubmed: 32000054
pmcid: 7230134
Ohnstad HO, Borgen E, Falk RS, et al. Prognostic value of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up. Breast Cancer Res. 2017;19:120. https://doi.org/10.1186/s13058-017-0911-9 .
doi: 10.1186/s13058-017-0911-9
pubmed: 29137653
pmcid: 5686844
Edmonds CE, O’Brien SR, Mankoff DA, Pantel AR. Novel applications of molecular imaging to guide breast cancer therapy. Cancer Imaging. 2022;22:31. https://doi.org/10.1186/s40644-022-00468-0 .
doi: 10.1186/s40644-022-00468-0
pubmed: 35729608
pmcid: 9210593
Jeong Y-J, Jung J-W, Cho Y-Y, et al. Correlation of hypoxia inducible transcription factor in breast cancer and SUVmax of F-18 FDG PET/CT. Nucl Med Rev Cent East Eur. 2017;20:32–8. https://doi.org/10.5603/NMR.a2016.0043 .
doi: 10.5603/NMR.a2016.0043
pubmed: 28198519
Robey IF, Stephen RM, Brown KS, et al. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia. 2008;10:745–56. https://doi.org/10.1593/neo.07724 .
doi: 10.1593/neo.07724
pubmed: 18670636
pmcid: 2481565
El Ansari R, McIntyre A, Craze ML, et al. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology. 2018;72:183–90. https://doi.org/10.1111/his.13334 .
doi: 10.1111/his.13334
pubmed: 28771772